Dikiş iplikleri
  • Dikiş iplikleri

     

    ...

    İyi bir dikiş kaliteli bir giysideki temel faktördür. Uygun bir şekilde yapılan dikişin mukavemeti, esnekliği, stabilizesi ve görünüşü dikiş tipine, dikiş ipliğine, dikiş iğnesine, dikiş sıklığına ve dikiş tansiyonuna bağlıdır.

    Dikiş İpliği Üretiminde Kullanılan Lifler

    Dikiş ipliklerinin üretiminde değişik tiplerde doğal ve yapay lifler kullanılmaktadır. Bunlardan bir kısmı sıkça kullanılırken bazıları ise daha sınırlı kullanılmaktadır. Ayrıca kesikli lif iplikleri ya da sonsuz filamentlerin kombinasyonu olan ipliklerin de üretimleri söz konusudur.

    • Doğal Lifler

    Keten:

    Keten liflerinden elde edilen iplikler sert tutumlu olmalarına rağmen oldukça yüksek mukavemetleri nedeniyle sağlam dikiş gerektiren ürünler için kullanılmaktadır. Özellikle ayakkabı, çadır ve tente imalatı ile düğme dikiminde tercih edilirler. Ancak son yıllarda bu ipliklerin yerini yapay liflerden elde edilen ipliklere bırakmaktadır.

    İpek:

    İpek iplikleri kontinü filament halinde ya da koparılmış liflerin eğrilmesi ile elde edilen stapel lif ipliği halinde kullanılmaktadır. Ancak yüksek maliyetleri nedeniyle dikim işlemlerinde yaygın olarak kullanılmamaktadırlar. Bu nedenle abiye giysilerde, özel siparişlerde ve iliklerde kullanılmaktadır.

    Pamuk:

    Dikiş ipliklerinin üretiminde en fazla kullanılan doğal lif pamuktur. Pamuk dikiş iplikleri genellikle iyi bir dikiş performansı sağlar. Fakat mukavemetleri ve aşınma dirençleri aynı kalınlıktaki bir sentetik iplikten daha düşüktür. Ancak pamuk iplikleri yüksek ve kuru sıcaklıklarda sentetiklere göre daha stabildir. Bu nedenle de dikiş işlemi esnasında ortaya çıkan iğne ısınmalarından daha az etkilenir. Bu özelliğinden dolayı avivaj maddeleri ile işlem görmeleri gerekmemektedir.

    • Rejenere Lifler

    Rejenere liflerin dikiş ipliklerinde kullanımı oldukça sınırlıdır. Rejenere liflerden elde edilen ipliklerin mukavemet ve kopma uzaması sentetik liflerden elde edilen ipliklerden daha düşüktür. Bu iplikler sahip oldukları yüksek parlaklık nedeniyle özellikle nakış işlemede tercih edilmektedirler. Genellikle filament formunda kullanılan bu ipliklerin sahip oldukları düşük mukavemet ve aşınma direnci, yalnızca dikim ya da nakış işlemede problem oluşturmakta kalmamakta, aynı zamanda bitmiş ürünlerin yıkanmalarında da problem yaratmaktadır.

    • Sentetik Lifler

    Sentetik dikiş iplikleri genellikle polyamid ve polyester liflerinden elde edilir. Sentetik iplikler filament olarak ya da kesikli liflerden eğrilmiş halde kullanılmaktadır. Sentetik iplikler bakteri, küf ve mantarlardan etkilenmezler. Özellikle filament formunda kullanıldıklarından yüksek kopma mukavemeti ve aşınma direncine sahiptirler.

    Polyamid ve polyester kimyasal etkilere karşı oldukça dirençlidir.

    Polyamid alkalilere, polyester ise asitlere karşı daha dirençlidir. Fakat her ikisi de güneş ışınlarından olumsuz yönde etkilenirler.

    Filament iplikler doğrudan kullanılabildikleri gibi stapel lif ipliğine de dönüştürülerek kullanılmaktadırlar. Dikiş ipliği olarak kullanılacak polyester ve polyamid filamentler dairesel kesite sahip olduklarından parlak bir görünümdedirler.

    Polyester lifleri düşük maliyetleri, elverişli kimyasal özellikleri, uygun uzama özellikleri ve yüksek boya haslıkları nedeniyle dikiş ipliği üretiminde en çok tercih edilen sentetik liftir.

    Polyamid liflerin mukavemetleri yüksek olmasına karşın uzama özellikleri dikiş iplikleri için uygun değildir. Çünkü gerilmeler karşısında uzayabilirlikleri daha fazladır. Bu da dikim sırasında ortaya çıkabilecek gerilmeler nedeniyle dikiş büzüşmelerine yol açabilmektedirler.

    Nomex gibi aromatik yapıdaki polyamid lifleri çok pahalıdır. Ancak ateşe dayanıklı giysilerin üretiminde kullanılan dikiş iplikleri için ideal bir malzemedir. PTFE (politetrafloretilen) dikiş iplikleri de çok pahalıdır. Fakat yanmazlık, erimezlik ve kimyasal maddelere yüksek dayanımları nedeniyle çok özel endüstriyel kullanımları vardır.

    İplik Yapısını Oluşturan Temel Faktörler

    Eğirme

    Bütün geleneksel dikiş iplikleri üretim aşamasına tek kat iplik olarak başlar. Bu tek kat iplikler, kesik elyaf veya çok ince sonsuz elyafların eğrilmesi ile üretilir. Liflerin incelikleri sayesinde, eğirme işlemi ile birbirlerini destekler ve kuvvetli bir yapı oluşturur.

    Büküm

    Eğirme işleminden sonra elde edilen tek kat ipliklere iki veya çok katlı olarak büküm işlemi uygulanır. Büküm işleminin amacı iplik katlarını bir arada tutmak ve ipliğe mukavemet ile dikilebilirlik özelliği kazandırmaktır. Yeterli bükümü olmayan bir iplik dikişte kontrol edilemez, katları tek tek ayrılır ve sonuçta kopar. Gereğinden fazla büküm uygulanmış iplik ise dolaşma ve topaklanma göstereceğinden dikişte olumsuz sonuçlara sebep olur. İdeal büküm sayısının belirlenmesi için, iplik hammaddesi, iplik kalınlığı, ipliğin kullanılacağı dikiş şartları gibi etkenler dikkate alınmalıdır.

    Büküm Yönü

    Dikiş ipliği, dikiş esnasında makine parçalarından geçerken Z büküm alacak şekilde etkilenmektedir. Bu sebeple dikiş ipliğinin son aşamasındaki büküm yönünün Z olması zorunludur. Son aşamasındaki büküm yönü S olan bir ipliğin çok kısa dikiş mesafesinde bile bükümü açılır, tek katı aşınır ve kopar. Dikiş ipliğinin son aşamasındaki büküm yönü Z olması gerektiği gibi, tek katının büküm yönü de S olmalıdır.

     

    dikis2

     

    Tek kat ipliği çok katlı olarak bükerken büküm yönü de değişmelidir. Aksi halde, tek katlı iplik eğirme yönü S iken çok katlı iplik büküm yönü S olarak uygulanırsa iplik katları birbirleriyle birleşmez ve düzgün bir yapı oluşturulamaz. Son aşamada büküm yönü Z olarak istendiğinde, tek kat ipliğin eğirme yönü olmalıdır.

     

    dikis1

    Kalınlık

    Dikiş ipliğinin bitmiş haldeki kalınlıklarını belirtmek üzere çeşitli numaralandırma sistemleri mevcuttur. En fazla kullanılan sistemler Tex, Nm, Ne ve Denye olarak belirlenmiştir. Bu sistemler ağırlık veya uzunluğa göre belirlenmişlerdir.

    Üretim Yöntemlerine Göre İplik Tipleri

    Kesik Elyaf İplikler

    Bu yapıda olan ipliklerin hammaddesi pamuk veya polyesterdir. Belirli boylardaki elyaf gruplarının birlikte bükülmeleriyle üretilirler. Bükümden önce iplik taranmaktadır. Bu işlem mevcut kısa liflerin ayrılmasını ve kalan uzun liflerin birbirine paralel olmasını sağlar. Böylece ipliğin mukavemeti ve düzgünlüğü artar.

    Corespun (İlikli) İplikler

    Bu gruptaki iplikler, özel bir üretim yöntemiyle dikiş için gerekli tüm avantajlar kazandırılarak üretilmektedir. İlikli iplikler, sonsuz elyaf polyester üzerine kesik elyaf polyester kaplanarak (poly/poly) veya sonsuz elyaf polyester üzerine pamuk kaplanarak (poly/cotton) üretilmektedir.

    İlikli iplikler orta kısımdaki sonsuz elyaf polyesterden yüksek mukavemet ve dış kısımdaki kesik elyaftan doğal bir yapı ve dikiş tutumu özelliği kazanırlar. Böylece istenilen incelikte ve yüksek kopma mukavemetine sahip olmaktadırlar. Ayrıca dış yüzeydeki tüycüklü yapının aerodinamik özelliğiyle iğne soğutma ve makine parçalarının daha az aşınması sağlanır.

    Sonsuz Elyaf İplikler

    Polyester veya polyamid hammaddeden üretilen sonsuz elyaf iplikler %100 olarak suni elyaftan üretilirler. Bu yapıda üretilen iplikler, çok delikli başlıktan çıkan çok ince sonsuz elyaf gruplarının birlikte bükülmesi ile tek katlı olarak, daha sonraki üretim aşaması ile de çok katlı olarak üretilmektedir. Kopma mukavemeti ve aşınma dirençleri yüksektir. Bu iplikler genellikle ağır şartlara maruz kalacak materyallerin dikiminde kullanılmaktadır.

    Trilobal Polyester İplikler

    Sonsuz elyaf ipliklerin bir çeşidi de üçgen kesitli filamentlerden üretilen trilobal ipliklerdir. Bu iplikler, üçgen kesitlerinin kazandırdığı parlak yapıları ile nakış işlemlerinde kullanılır.

    Textüre İplikler

    Textüre işlemi, çeşitli yöntemler yardımı ile (yalancı büküm, hava jeti, yığma kamarası) düz filament ipliklere kalıcı bir kıvrımlılık ya da dalgalı form kazandırma işlemidir. Böylelikle iplik uzayarak hacimli bir yapı ve yumuşak bir tutum özelliği kazanır. İpliğin kullanım alanına bağlı olarak uzama ve hacimlilik özellikleri değişebilir. Textüre iplikler özellikle kenar kapama ve overlok dikişlerinde, kısmen de zincir dikiş makinelerinde kullanılmaktadır. Bu iplikler açılarak geniş bir yüzeye yayıldıkları için kenar kapamalarda iyi sonuçlar vermektedir.

    Air Jet İplikler

    Sonsuz filamentlerin air-jet ile tekstüre edilmesiyle üretilen bu iplikler, ufak yüzey düzgünsüzlükleri veren filamentlerden oluşan ilmekler ile karakterize edilebilen çok filamentli tek kat ipliklerden üretilirler. Bu düzensizlikler ilmeğin iyi kilitlenmesini sağlar. Aynı zamanda bu iplikler düz filament ipliklere göre makine parçalarıyla daha az temas eder. Bu sayede air-jet ipliğin temasta olduğu yüzey ile arasındaki sürtünme azalır. Tekstüre etme, filamentlerle elde edilen yüksek mukavemeti azaltır. Fakat bu ipliklerin uzayabilirlikleri daha yüksektir.

    Monofilament İplikler

    Tek filament halinde, istenen iplik numarasında, tekstüre edilmiş, bükümsüz, kalın, kaba filamenttir. Monofilament iplikler Naylon 6 veya Naylon 6,6’dan yapılmıştır. Işığı yansıtmak için yalnızca tek yüzeyleri olduğundan yarı saydamdırlar ve dikilen kumaşın rengini gösterirler. Bir tek filamentten üretilen iplik, aynı numaradaki çok filamentli iplikten daha serttir ve bu fark kalın ipliklerde daha da belirgindir. Genellikle kaba kumaşların dikiminde kullanılır.

    Dikiş İpliklerinin Özellikleri

    Dikilecek olan materyal ve dikim esnasında kullanılan dikiş makinesi ne kadar iyi olursa olsun, dikiş ipliği istenilen özellikte değil ise ortaya çıkan ürün istenilen düzeyde olmaz.

    İyi bir dikiş ipliğinde aranan özellikleri söyle sıralayabiliriz:

    • İplik numarası,
    • Yüksek tenasite,
    • Uygun elastisite,
    • Düşük iplik sürtünme katsayısı,
    • Isıya dayanıklılık,
    • İplik düzgünlüğü,
    • Düşük tüylülük,
    • Yumuşaklık ve kayıcılık,
    • Yüksek aşınma mukavemeti,
    • Büküm ve büküm dengesi,
    • Renk haslığı, ışık haslığı, kuru temizleme ve diğer haslık değerlerinin yüksek olması,

    Kimyasal işlemlere dayanıklılık

    Dikiş ipliği hakkında karar verirken iyi bir dikiş ipliğinde aranan özellikler dikkate alınmalı ve kontrol edilmelidir. Örneğin, kayma özelliği iyi değil, düzgünsüzlüğü yüksek ise dikiş ipliğinin yüksek mukavemetli olması yeterli olmayacaktır. Böylece dikiş ipliği tüm istenen özelliklerin optimal bir şekilde bir araya gelebilmesi ile dikilebilme kabiliyetini ve dikişten sonra kullanma performansını kazanmaktadır.

    Dikiş İpliklerinin Numaralandırılması

    Dünyada iplik kalınlıklarını belirlemek üzere kullanılan çeşitli numaralandırma sistemleri mevcuttur. En fazla kullanılan sistemler Tex, Nm, Ne ve Denye olarak belirlenmiştir. Bu sistemler ağırlık esasına göre veya uzunluk esasına göre belirlenmişlerdir.

    Sentetik ipliklerin Etiket No. su bulunurken Tex cinsinden toplam kalınlık değeri göz önüne alınır. Hesaplama; 1000 sayısının, bu değere bölünüp 3 ile çarpılması ile yapılır. Pamuk için 590 sayısı, bulunan Tex değerine bölünür.

    Aşağıdaki polyester ve pamuk dikiş iplikleri için örnek hesaplama tablosu görülmektedir:

     

     

    dikis3

     

     

    dikis4

     

     

    Dikiş iğnesi

    Dikiş iğneleri çok eski tarihlerden beri kullanılmaktadır. İlk zamanlar fildişi, kemik, tahta ve boynuzdan yapılmaktaydılar. Şekilleri o zamandan beri değişmemiştir. 15. yüzyıl boyunca demir iğneler el dikişi için kullanılmaya başlamıştır. 1800 yılında Almanya’da Balthasar Krems, ilk defa, geliştirdiği zincir dikiş makinesi için iğneyi kullanmaya başlamıştır. 1840 yılından sonra büyük ölçüde üretilmeye başlanan dikiş makineleriyle beraber dikiş makinesi iğnelerinin imalatında büyük gelişmeler olmuştur.

    Dikiş iğneleri çelikten imal edilir ve imalatın son safhasında parlatılırlar. Daha sonra, korozyona dayanıklılık, mekanik aşınmaya dayanıklılık, dikiş sırasında sürtünmenin azaltılması ve iyi bir görünüş elde etmek için elektroliz ile kaplanırlar.

    Kaplama malzemesi genellikle krom ya da nikeldir. İğnelerin yüzey kaplamasından beklenen diğer önemli özellik, dikiş sırasındaki aşırı iğne ısınması sonucu sentetik kumaş ve ipliklerde ortaya çıkan erimiş parçacıkların iğneye yapışmasının bir ölçüde engellenmesidir. Üzerleri teflon ya da PTFE kaplı iğneler bu amaç için geliştirilmiştir ve özel uygulamalar için kullanılmaktadır.

    Belirli bir makinede kullanmak için iğnenin o makineye çap ve uzunluk olarak uyması gerekir. Ayrıca, çeşitli iğne imalatçıları, yüksek hızlarda ortaya çıkan iğne ısınmasını azaltmak ve kumaş hasarı ve büzülme problemlerini önlemek için daha ince çaplı iğneler geliştirmeye ihtiyaç duymuşlardır. Dikiş iğneleri çeşitli numaralarda imal edilir, kumaş ve iplik yapısına uygun olarak seçilir. Kumaşlar, günümüzde daha ince ve sık yapıda dokundukları için iğne ve ipliklerin de daha ince ölçülere sahip olması gerekmektedir. İğne, dikilecek kumaş ve ipliğe göre daha ince seçilmiş ise dikiş sırasında eğilir ve kırılır. Eğer iğne iplik için çok kalın ise, halka oluşumu zor kontrol edilir ve atlamış dikişlere yol açar. Ayrıca kalın iğne, kumaşta büyük delikler açarak dikiş görünüşünün bozulmasına ve kumaşın hasar görmesine neden olur. Farklı iğne imalatçıları, iğne ölçülerini tanımlamak için kendi sistemlerini kullanırlar. Ancak en basit numaralama metrik sistemdir. Bu sistemde, iğne numarası iğne şaftının ortasından alınan çap ölçüsünün 100 ile çarpılmasıyla belirlenir. Çap 0,9 mm ise Nm 90, çap 1,1 mm ise Nm 110 olur.

    Çeşitli iğne numaralama sistemleri aşağıdaki görülmektedir.

     

     

    dikis5

     

     

    Dikiş işlemi

    İki boyutlu olan kumaş yüzeyinin üç boyutlu hale getirilebilmesi için dikim işlemi uygulanır. İnsan vücudunun derinlik boyutu ancak bu şekilde sağlanabilir. 18. yüzyılın başlarında el dikişi kullanılırken, artan nüfus ve buna bağlı giysi gereksinimi dikiş makinelerinin üretilmesine sebep olmuştur. Böylece dikiş, iğne, iplik, kumaş ve makine dörtlüsünün oluşturduğu bir şekle ulaşmıştır. Dikiş makinesindeki dikim işleminde, makinenin bir devrinde dikiş iğnesi, dikiş ipliği ile bir veya birkaç kat kumaşa batıp, kumaşın altında bulunan ikinci bir iplikle bağlanır ve bu bağlantının kumaşın içine çekilmesi ile ilmek oluşur.

    Dikiş Makinesindeki Temel Dikiş Tipleri

    El Dikişi

    Dikiş iğnesiyle elde yapılan bu dikiş için özel dikiş makineleri de geliştirilmiştir. Punto dikiş makinesi olarak isimlendirilen bu makinedeki iki ucu sivri iğne, kumaşın üstünde ve altında bulunan iki tutucu çene arasında gidip gelerek dikim işlemini oluşturur. Genelde teyel, baskı, süsleme amacıyla kullanılan esnek bir dikiş türüdür. Özel bir makinesi olduğu için pahalı üretimde kullanılmaktadır. Özellikle bu dikiş erkek ceket yaka ve cep kenarları ile pantolon yan dikişlerinde kullanılır. Sürekli olarak iplik değiştirmek gerekir ve özel parafinli iplik kullanılır.

    Düz Dikiş

    Bu tip makinelerde, iğnenin yardımıyla üst bobinden gelen dikiş ipliği kumaşa batarak kumaşın altında bir ilmek oluşturur. Bu ilmeği çağanoz yakalayıp büyüterek, içinde masuraya sarılmış alt iplik bulunan mekiğin etrafından geçirmektedir. Üst iplik yukarıya doğru çekilirken alt iplik ile düğümlenerek dikiş oluşturmaktadır.

    Zincir Dikiş

    Mekiksiz olan zincir dikiş makinelerinde altta çalışan bir lüper iğneden gelen ipliği kendi içerisinden geçirerek dikişi oluşturur. Tek iplikli zincir dikişte lüper iğneden gelen üst iplikle dikiş işlemini gerçekleştirir. İplik kumaştan geçtikten sonra lüper bu ipliği tutarak ilmek oluşturur ve iğnenin ikinci batışında üst iplik bu ilmeğin arkasından geçerek düğümlenmektedir.

    Bütün dikiş tipleri bu üç ana dikişten elde edilmektedir. Overlok ve reçme makineleri zincir dikişten türetilmiş dikiş tipleridir.

    Çok sayıda dikiş tipleri için uluslararası standartlar bulunmaktadır. Aşağıda

    İngiliz ve Amerikan standartları tarafından kullanılan sistem görülmektedir.

    • Sınıf 100: Tek iplikli zincir dikişler
    • Sınıf 200: El dikişleri
    • Sınıf 300: Kilit – düz dikişler
    • Sınıf 400: Kilitli zincir dikişler
    • Sınıf 500: Overlok tipi dikişler
    • Sınıf 600: Kaplayıcı dikişler (reçme).

    Dikiş performansı

    Bir giysinin görünüm ve kullanım kalitesini belirleyen en önemli faktör kumaşın kalitesidir. Ancak kumaşın kalitesi tek başına, istenilen özellikte bir giysinin oluşturulması için yeterli değildir. Giysiyi oluşturma sırasında kaliteyi etkileyen en önemli faktörlerden birisi dikiş performansıdır. Giysiyi oluşturan dikişlerin hem estetik, hem de fonksiyonel açıdan yeterli olması gerekir. Bir giysinin kullanımı sürecinde giysinin kumaşı son derece iyi bir durumda olsa bile, dikiş yerlerinde kopmalar veya açılmaların olması onu kullanılamaz hale getirecektir. Giysilerde dikişle ilgili olarak ortaya çıkan bu ve benzeri sorunların nedenleri incelendiğinde çoğunlukla üç durumla karşılaşılmaktadır.

    • Dikiş ipliğinin kumaştan önce yıpranması veya kopması,
    • Kumaşı oluşturan ipliklerin dikim işlemi sırasında dikiş iğnesi tarafından koparılması veya zarar görmesi ve bunun sonucu olarak da kumaşta küçük deliklerin oluşması,
    • Dikiş kayması, yani dikiş ilmeklerinin bitişiğindeki atkı veya çözgü ipliklerinin kayması ve dikiş açılmasının oluşması.

    Bu problemlerin ortaya çıkmasını engelleyebilmek için giysinin oluşturulması aşamasında dikiş makinesi, dikiş tipi, dikiş hızı, iğne numarası, iğne ucunun şekli, dikiş ipliği, dikiş payı, dikiş sıklığı ve gerginlik gibi etkin parametrelerin kumaşa uygun olarak seçilmesi gerekmektedir.

    Dikiş performansı, Carr ve Latham tarafından mukavemet, esneklik, dayanıklılık ve konforlu bir şekilde dikişin oluşturulması olarak açıklanmıştır.

    Bir başka kaynakta ise dikiş performansının, dikimin esnekliğine, mukavemetine ve vücuda uyum kabiliyet özelliklerine bağlı olduğu, bu özelliklerin de kumaşın özelliklerine, dikim tekniğine, dikiş tipine, dikiş ipliği cinsi ile numarasına ve dikiş sıklığına bağlı olduğu belirtilmiştir. Dikişin pek çok bileşeni vardır, hepsi birbiri ile doğru şekilde dengelendiği zaman dikiş verimli şekilde performans gösterebilmektedir.

    Dikiş Mukavemeti

    Dikiş mukavemeti, dikilmiş kumaşlarda dikiş yönüne dik olarak uygulanan bir kuvvet sonucunda dikiş yerlerinin kopmaya karşı gösterdiği dirençtir. Kopma uzaması da dikişin koptuğu andaki % uzama değeridir.

    Kullanım esnasında kumaşların maruz kaldığı kuvvetlere dikişler de maruz kalmaktadır. Bu kuvvetlerin uygulanması sonucunda, kumaş yerine dikişin zarar görmesi, tekrarlanma ve onarım açısından tercih edilmektedir. Bu sebeple dikiş mukavemetinin, kumaş mukavemetinin %80–85 ’i kadar olması tavsiye edilir.

    İki kumaş parçası bir dikiş ile birleştirildiğinde ve bu dikiş hattına dik açıda artan bir kuvvet uygulandığında dikiş çizgisinde ve buna yakın yerlerde kopmalar görülür. Bu kopmalar dikilmemiş kumaşı koparmak için gereken kuvvet değerinden daha az bir kuvvetle gerçekleşir. Bunlar da dikiş hatalarını oluşturur .

    Dikiş mukavemeti İplik özellikleri, kumaş türü, dikiş tipi ve dikiş sıklığından etkilenir. İplik özelliklerinin varyasyonlar göstermesi, dikim esnasındaki aşınma dayanımı gibi özellikler dikiş mukavemetini etkiler. İplik kalınlaştıkça dikiş mukavemetinin arttığı araştırmalar sonucu görülmüştür. Ayrıca sentetik iplikler, doğal iplilerden daha yüksek dikiş mukavemeti oluşturmaktadırlar.

    Dikilecek kumaşın gerilmesi, düzeni, sıkı dokunması, terbiye işlemleri dikiş mukavemetini etkileyerek, dikişin kumaştan önce kopmasına sebep vermektedir. Dikiş tipleri incelendiğinde daha fazla iplik kullanılarak daha çok bağlantı oluşturan zincir dikişin dikiş mukavemetinin daha yüksek olduğu, ancak çok sıralı dikişlerin, dikiş sırası artışı ile artan bir mukavemet gösterdiği tespit edilmiştir. Dikiş yoğunluğundaki değişmeler dikiş mukavemetini etkileyen diğer bir parametredir. Dikiş yoğunluğu arttıkça dikiş mukavemeti de artar. Bu durum, iğne delikleri nedeniyle materyalin zayıflamaya başladığı noktaya kadar sürer. Daha düşük dikiş yoğunluğunda daha kuvvetli iplik kullanılmalıdır. Bu da kalın bir iğne gerektirir ve bunun sonucunda da kumaşta iğne hasarları artar.

    İnce kumaşlarda, dikiş sıklığı arttıkça dikiş mukavemeti neredeyse kumaş mukavemetine eşit olmakta ve dolayısıyla dikiş bölgesine bir kuvvet uygulandığında dikiş ipliğinin kopması yerine kumaşta dikiş hattı boyunca yırtılma oluşmaktadır.

    Dikiş tipindeki varyasyonlar da dikiş mukavemetini etkilemektedir. Kilit dikiş makinelerinde iğne ipliğini etkileyen büyük kuvvet kayıpları ortaya çıkmaktadır. İğne iplikleri zincir dikişe göre daha fazla gerilme yükleyen bir dikiş geometrisi altındadır. Bu nedenle zincir dikiş ve overlok dikişi kilit dikişten daha mukavemetlidir.

    Dikiş Esnekliği

    Dikiş boyuna yönde gerildiğinde, dikiş tipi, kumaş özellikleri, iplik türü ve dikiş sıklığı ile iplikteki gerilim miktarına bağlı olarak iplik kopuşlarından dolayı dikiş bozulmaları görülür.

    Kullanım sırasındaki zorlanmalara ayak uyduracak ve kuvvet kalktığında eski haline dönecek dikişlerin kullanımı esneklik için şarttır. Genellikle dokuma kumaşlarda gerilme, örme kumaşlara göre daha azdır. Kullanılan dikiş tipine bağlı olarak uzama değerleri farklılaşır. Ancak iplik gerginlik ayarları ile oynayarak dikişlerin uzama değerleri birbirine yaklaştırılabilir. Dikiş sırıtması endişesi yoksa, düşük gerilim ile zincir dikiş ekstra uzamalara yardımcı olur. Dikişin uzaması durumunda iplikler kumaşa doğru çekilerek, kuvvet kalktığında eski haline dönerler. Ancak bu durum kumaş ipliklerini kesme eğilimi gösterir ki, bu da dikiş kopması anlamına gelir.

    504 üç iğne overlok dikişi, ulaşılabilir maksimum esnekliği verir. Ayrıca reçme dikişi de esneklik bakımından iyi performans gösterir ve bunun yanında daha az hacimlilik sağlar. Kilit dikiş, zig – zag adımları ile kullanılarak, yüksek uzama ve sağlamlık elde edilebilir. Zincir dikiş, düz dikişe göre birim uzunlukta daha fazla iplik kullandığı için daha esnektir.

    Dikiş yoğunluğu arttıkça, santimetredeki iplik miktarı artacağından, dikiş esnekliği belli bir noktaya kadar artar. Bu, iplik gerginliğinin çok iyi bir şekilde, dikiş kısalırken ayarlanması ile mümkün olur. Gerilimin dikiş yoğunluğuna göre ayarlanması ile, farklı dikiş sıklıkları durumundaki dikiş sırıtması aynı kalacak ve %70 ‘in üzerinde esneme sağlanabilecektir.

    Dikiş yoğunluğunun, esneklik sağlamak amacıyla belli bir limitin üzerine çıkarılması kumaşın sıkışmasına, dikişin toplanmasına ve kumaşın uzamasından sonra tam olarak rahatlayamayıp, zayıflayarak bozulmasına sebep olur.

    Dikiş ipliği tipi de dikiş uzaması açısından önemlidir. Pamuk iplikleri %6–8, orta kalınlıktaki sentetik iplikler iyi dikiş performansını kaybetmeden %15-20, kalın sentetik iplikler %25 uzama gösterirler. Eğer fazla bir uzama artışı isteniyorsa, %30 uzamaya sahip eğrilmiş polyamid iplikler kullanılabilir. Ancak bu iplikler, iğne ipliği olarak değil, alt iplik olarak düz ve zincir dikişlerde kullanılarak maksimum uzama, düzgün bir dikiş ve dikiş esnekliği sağlanabilir. İpliğin bobinden minimum gerilim ile boşalması tam bir dikiş uzama potansiyeli için gereklidir.

    Dikiş Dayanımı

    Bir giysinin dikiş ömrü, diğer materyaller kadar uzun ve son kullanım zamanına uygun olmalıdır. Daha erken bir zamanda iplik veya kumaşta bir büzülme olursa bu dikiş bozulması olarak düşünülebilir. Kot pantolon, iş giysileri, iç giyim ve okul giysileri büyük bir aşınmaya maruz kalmaktadır. Bu nedenle dikişler bu aşınmayı karşılayacak şekilde oluşturulmalıdır. Giysiler üzerine gelen ilk aşındırıcı etki dikim işleminin kendisi ve dikim sırasında iğne ipliklerindeki kuvvet kaybıdır. Dikiş sırasındaki bir ipliğin dayanımı; dikiş tipi, dikiş dengesi, dikiş gerginliği, dikiş adımı, iplik tipi ve dikilecek materyalin yapısı olmak üzere birçok faktöre bağlıdır.

    Yüksek gerilim altında dikilen dikişler, düşük gerilim altında dikilenlere göre daha az hassastır. Ayrıca zincir dikişlerdeki ilmek ipliklerinin ömrü, dikiş dengesi sağlandıkça artış gösterir. Dolayısıyla iğne ipliği ile ilmek ipliği arasındaki oran 1: 1 olmalıdır. Tüm bu etkiler ipliğin malzeme içinde daha iyi yataklanarak dikişin korunmasını sağlarlar. Dikiş sıklığının artışı sürtünmeyi arttıracağı için aşınma dayanımını azaltır.

    Yoğun dokunmuş ve kaplanmış kumaşlarda dikiş yüzeyde kalacağı için yıpranma daha fazla olacaktır. Kullanım yerine bağlı olarak özel efektli dikiş ve kumaşlarda kullanılacak ipliklerin aşınma mukavemetleri yüksek olmalıdır.

    Sentetik iplikler, eğrilmiş polyester kaplanmış pamuk ipliği ve polyester kaplanmış nüveli iplik daha iyi dikiş performansı gösterir. Kalın ipliklerdeki aşınmaya maruz lif sayısı fazla olacağından aşınma dayanımı artacaktır. İnce ve fazla bükümlü ipliklerde aşınma daha az olacaktır.

    İpliklerin ve dolayısıyla dikişin aşınmaya karşı direncini arttırmak için; dikim esnasında iplikleri yağlamak, iplik üretiminde uzun elyaflı ve yüksek dirençli hammadde kullanmak ve ipliğe gaze işlemi uygulamak yararlı olacaktır.

    Dikiş Güvenliği

    Dikiş güvenliği, dikişin iplik veya kumaş kopması veya dikiş kayması sonucu dikişlerin bozulmaması şeklinde düşünülebilir. Dikiş güvenliği; dikiş adım güvenliği, dikiş adım tipi ve kalitesi gibi faktörleri de içerir.

    Bir dikiş adımında iplikler birbirleri içerisinden 3 farklı şekilde geçebilir. Tüm bu tipler dikiş güvenliğini etkiler ve her bir tip farklı güvenlik dereceleri ile açıklanır.

    Kilit dikişli bir dikim işleminde bir ipliğin kopması, diğer dikiş adımlarında, boyuna ve çapraz uygulanan gerilimlere, kumaş uzaması ve iplik yüzeyine bağlı olarak geri çekilme olabilir. Dikiş güvenliği açısından dikim işlemi sonunda dikişlerin arkadan teyellenerek sağlamlaştırılması önemlidir.

    Uygulamada en az güvenli dikişler, tek iplik zincir dikişlerdir. Çünkü bu dikişler, bir iplik ilmeğinin aynı ipliğin oluşturduğu başka bir ilmeğin içinden geçirilmesi ile oluşturulmuştur. Bu sebeple son dikiş düzgün kilitlenmemişse, bir iplik kopuşu ve dikiş kayması ile dikişin çözülmesi çok kolaydır. Dikkatli iplik seçimi, her bir dikişin iç sürtünmesini arttırarak, geri kaçma eğilimini azaltabilir. İğne ipliklerinin, bir veya daha fazla farklı ipliğin oluşturduğu, tek veya çoklu ilmekler arasından geçerek oluşturduğu dikiş tipinde halen geri kaçma eğilimi söz konusudur. Ancak iç sürtünmenin artışı ve pürüzsüz iplik yüzeyi durumunun ön plana çıkması ile çoğu kez iplikler fazla kaçmadan, dikiş içerisinde karışım ortaya çıkar. Diğer önemli husus ise, zayıf dikiş hatlarının sonlarının çapraz dikiş ile sağlamlaştırılmaları ve punteriz dikiş ile iplik sonlarının dikiş hattına alınmalarıdır.

    Anlaşılacağı üzere, dikiş tipi, bir dikiş hattındaki ipliğin kopuşunu etkileyen ilk ihtimaldir ve dikişin ileride açılma derecesini belirler.

    Dikiş kayması, bobin kopçasındaki hatadan veya ilmek yapısının iğne ipliğindeki ilmeği çekmesi ile ortaya çıkar. Eğri iğneler, iplik ölçüsü ve tipine uygun olmayan iğneler, yanlış iplik gerilimi, zayıf baskı ayağı ve iğne deliği ve açıklığının büyük oluşu dikiş kaymasını etkiler. Bu durumda kumaş iğne ile aşağı – yukarıya oynar, bu da istenmeyen bir durumdur.

    Dikiş Rahatlığı

    Bu faktör, ilk dört faktörün uygulanmasına bağlı olarak ortaya çıkacaktır. Dikişler kendi çevrelerinde, beden karşısında bağlanmış olabilirler ve vücuda bir çıkıntı veya sertlik hissi verebilirler. Bunun sebebi uygun olmayan dikiş adımı, dikiş veya dikiş ipliği seçimidir. İplik sonları veya etiket köşeleri de bölgesel rahatsızlık oluşturabilirler.

    Bir dikiş beden karşısında bağlanmışsa, dikiş ipliği kopuşu yüksek bir olasılıktır ve kumaş uzamasının dikiş uzamasından daha fazla olacağı düşüncesi hakimdir. Bir dikiş rahatsız edici bir sırt oluşturuyorsa, bunun sebebi kapalı bir overlok veya açık dikişe göre daha hacimli ve emniyet dikişli bir dikiş hattının oluşturulmuş olmasıdır. Bunun alternatifi olan açık bir dikiş hem daha maliyetli hem de dikiş adımı tipleri bakımından yetersiz uzamaya sahip olacaktır. Sert bir tutum gösteren bir dikiş, kenarları düzgünleştirmek için yapılan overlok ve reçme dikişinde ilmek ipliği olarak tekstüre iplik kullanılarak yumuşatılabilir.

    Karşılaşılan dikiş problemleri

    Dikiş İpliğinin Kopması

    Dikiş ipliği herhangi bir sebepten dolayı üzerinde meydana gelen gerilimin artması ile zayıf yerinden kopar. Dikiş ipliğinin kopması, uygun dikiş makinesi, dikiş tipi ve dikiş ipliğinin seçilmemesinden kaynaklanabilir. Bunlardan başka yüksek iplik gerilimleri, iğne ucu ile iğne gözünün bozuk olması ve çok kalın bir iğnenin kullanılması da dikiş ipliğinin kopmasına neden olabilir.

    Endüstriyel düz dikiş makinelerinde, yüksek hızlı dikiş sırasında dikiş ipliklerinde hasarlar oluşmakta ve bu da mukavemet azalmasına sebep olmaktadır. Taramalı elektron mikroskopta (SEM) yapılan çekimlerde, hasarın daha çok iğne ipliğinin bağlantı noktasında ortaya çıktığı görülmektedir. Dikiş ipliğindeki liflerde, periyodik gerilimler sonucu yarıklar oluşmakta ve sonuçta iplik kopmaları meydana gelmektedir.

    Dikiş Kayması

    Dikiş kayması (açılması), kumaştaki dikişlerin yük etkisi altında açılması durumuna verilen isimdir. Dikiş kayması esas olarak kumaş yapısına bağlıdır. Dikiş kaymasına çok sık rastlanmamaktadır. Ancak gevşek yapılı kumaşlarda daha sık görülmektedir. Bir dikiş kendi yönüne dik açılarda esnediğinde dikiş kayması normal olarak meydana gelir. Eğer dikiş açılması göze çarpacak şekilde ise, dikiş kusuru olarak sayılır.

    Kumaş mekanik özelliklerinden yola çıkılarak dikiş kayması üzerinde yapılan araştırmalar dikiş kaymasının, kumaşın eğilme, yırtılma ve şekil alabilirlik özelliklerinden etkilendiğini göstermiştir.

    Düşük eğilme rijitliği, dikiş görünümü açısından zararlıdır. Bununla birlikte oldukça düşük şekil alabilirlik, kumaşın dikiş esnasında oluşan kuvvetlere adaptasyonunu önler, dikiş alanında dikişin oluştuğu noktada dikiş ipliğinin kütlesinden dolayı kumaş kesme deformasyonuna sebep olur. Bu yolla sebep olunan kumaş kesme deformasyonu, dikiş oluşum alanında kumaş uzaması ile sonuçlanır.

     

     

    dikis6

     

     

    Dikiş kayması, kesme kuvvetlerinin arasındaki etkileşimden ve dikiş oluşum alanındaki kumaş uzamasından dolayı meydana gelen bir dikiş deformasyonudur.

    Dikiş Sırıtması

    İki kumaş parçası düz bir dikiş ile birleştirildiğinde ve yine bu dikiş dik açılarda zorlandığında, dikiş kopmadan önce iki kumaş arasında bir yarık açılabilir.

    Bu, dikiş sırıtmasıdır ve dikiş gerilime ve yoğunluğu ayarlarıyla kontrol edilebilir.

     

    dikis7

     

     

    Yapılan araştırmalar sonucu; dikiş sırıtma miktarının, dikiş sıklığı azalması ve iplik esnekliğinin artması ile arttığını göstermektedir. Kumaşa uygulanan yük, kumaş deformasyonuna ve daha sonra da dikiş deformasyonuna sebep olur. Bu nedenle, kumaş esnekliği artarsa, dikiş sırıtmasının miktarı azalır.

    Dikiş Atlaması

    Dikiş hattında, bir veya daha çok dikiş adımının oluşamaması dikiş atlaması olarak bilinir. Dikiş atlamaları dikiş oluşumunda, kavrayıcı veya lüperin iğne ipliği halkasını yakalayamamasından dolayı oluşur.

    İyi bir dikişte, iplik hasarı ve kopuşunun yanı sıra, dikiş atlamasının da olmaması istenir. Özellikle zincir dikiş ve otomat dikiş makinelerinde bu durum daha da önemlidir. Seyrek dikiş atlamaları göz ile fark edilmeyebilir. Ancak bu atlamalar tamir edilmezlerse daha sonra dikişin tamamen sökülmesine yol açabilirler. Dikiş atlamasının nedenlerinden en önemlileri, iğne ile kavrayıcı uç arasındaki mesafenin ve dikiş plakası üzerindeki iğne deliğinin uygun olmamasıdır. Yanlış iğne sistemi, ipliğin hatalı geçirilmesi, baskı ayağı baskısının çok düşük olması ve kavrayıcı ucun veya lüperin ayar bozukluğu da dikiş atlamasına sebep olabilir. Dikiş atlaması probleminin düzeltilmesi için, dikiş makinesinin zamanlamasını düzenlemek, hatalı parçaları değiştirmek ve makineyi temizlemek gerekir.

    Dikiş Büzülmesi

    Konfeksiyon teknolojisinde büzülme, düz bir kumaş üzerinde dikiş hattı boyunca oluşmuş dalgalı görünümdür. Büzülme ya hemen ortaya çıkar ya da ilk başta ortaya çıkmayıp giysinin ütülenme, yıkanma gibi işlemlerinden sonra görülebilir.

    Dikiş büzgüsü, sabit bir yük altında orijinal kumaş üzerinde dikilmiş kumaşın kalınlığındaki yüzdesel artış ölçülerek belirlenir.

    Dikiş iğnesi, kumaşa her batışında atkı ve çözgü ipliklerini iterek onların yer değiştirmelerine sebep olur ve bu sırada birtakım gerilimlere maruz kalır. Bu gerilim; kumaşın yapısına, kalınlığına, mekanik özelliklerine, dikiş iğne aralığına ve dikiş uzunluğuna bağlıdır. Dikiş iğnesi, dikiş oluşum yönünde parçalar üzerinden ayrıldığında, iğne deliği açıklığı alanında atkı ve çözgü ipliklerinde kısmen ya da tamamen relaksasyon meydana gelir. Bu, atkı ve çözgü ipliklerinin elastik özelliklerine bağlıdır. Bu yüzden iğne ve bobin ipliğinin kilitlenme alanında aşınma kuvvetlerinden dolayı dikiş oluşumu anında çalışma parçaları sıkışır. Bu yolla meydana gelen dikiş merkezi yönündeki deformasyon, atkı ve çözgü ipliklerinin gerilimlerinde artışa sebep olabilir. Tekrarlı delinmeler boyunca, dikiş iğnesi kumaş atkı ve çözgü iplikleri arasında yönünü bulmak zorundadır ve iplikler tekrar birbirleri arasından itilirler. Atkı ve çözgü ipliklerinin tekrarlı yer değiştirmesinden dolayı tekstil yüzeyinde yapısal deformasyon meydana gelir. Eğer gerilim, elastikiyet sınırından daha yüksek olursa, kumaşta plastik deformasyon olarak kendini gösterir.

    Bu deformasyon dikiş büzgüsü olarak yansır. Bu durum dikiş kalitesi üzerinde olumsuz bir etkiye sahiptir.

    Dikiş büzgüsünün önemli sebeplerinden bir tanesi de dikiş makinesinin iğne-iplik tansiyonun iyi ayarlanmamış olmasıdır. Genelde iğne-iplik tansiyonunun yüksek olduğu dikiş makinelerinde dikiş büzgüleşmeleri meydana gelir. Böyle dikiş makinelerinde büzgüleşmeyi azaltmada sert iplikler yumuşak ipliklere göre daha uygundur. İğne-iplik tansiyonunun düşük olduğu makinelerde ise, yumuşak iplikler sert ipliklerden daha uygundur.

    Dikiş büzüşmesine neden olan diğer önemli faktör ise yıkamadır. Günümüzde üretilen kumaşların büyük çoğunluğu sabit boyut niteliğini taşır. Kullanımları sırasında enden ve boydan çekmezler. Çünkü bu kumaşların hammaddeleri çoğunlukla sentetik veya sentetik-doğal liflerin karışımıdır. Doğal liflerden yapılan iplikler nemi emdikleri zaman çapları genişler ve boyları kısalır. Normalden fazla nemli pamuk ipliği ile dikilen kumaşta toplanma ve dikiş büzüşmesi meydana gelir. Kumaş kuruduğunda, iplikler eski uzunluklarına dönseler bile kumaş üzerindeki büzüşme kaybolmaz. Islak durumdaki pamuk ipliği %4–7 arasında çeker. Bu oran merserize pamuk ipliklerinde %3 tür. Yıkama suyunun sertlik derecesi de çekme oranını etkiler.

    Yazan Perşembe, 20 Şubat 2020 14:35 in Konfeksiyon Okunma 11 defa

Dokuma

 

 

 

cozgu19

Dokuma makineleri; örgü bağlantılarıyla belli bir düzen içinde çözgü ve atkı ipliklerini birleştirerek bir tekstil yüzeyi meydana getiren makinelerdir. Temel prensipleri aynı olmakla beraber üretici firmaya göre değişiklikler gösteren çok farklı yapılarda dokuma makineleri vardır.

0100dok

Dokuma makinelerindeki ana elaman ve sistemler:
>>>>> Tezgâh iskeleti (şasi)
>>>>> Hareket iletim sistemleri
>>>>> Ana mil
>>>>>  Çözgü köprüsü ve çözgü salma sistemleri
>>>>> Kumaş çekme ve sarma sistemleri
>>>>> Çerçeveler ve ağızlık açma sistemleri
>>>>> Atkı atma sistemleri
>>>>> Tefe ve tarak
>>>>> Kenar yapıcı sistemler
>>>>> Cımbarlar
>>>>> Atkı kontrol sistemleri
>>>>> Çözgü kontrol sistemleri
>>>>> Uyarı ışıkları
TEZGAH İSKELETİ
Tezgâh iskeleti, makinenin randımanlı çalışabilmesi için kumaşı meydana getiren parçaların üzerinde toplandığı kısımdır. Bütün makine elamanlarının üzerine yerleştirildiği bir, iki veya dört kiriş ile bağlanan iki kenardan oluşur. Dokuma makinesi şasisi üzerinde bulunan mekanizmaların sebep olduğu titreşimleri yutabilecek özellikte olmalıdır.
0101dok
 
Yan kenarları çarpma kuvvetine karşı dayanabilecek kadar kuvvetli olmalı ve bir bütün hâlinde nakledilmeye uygun olmalıdır. Motorun tezgâh şasisine oturtulmasından (makinenin titreşimi sonucu motora ve yataklarına zarar verdiğinden) artık vazgeçilmiştir. Modern dokuma makinelerinde motor, tezgâhın yanında yere veya yere monte edilmiş bir sehpa üzerine monte edilmektedir.

DOKUMA MAKİNELERİNDE DİREKT HAREKET İLETİMİ

Direkt hareket sistemi, motordan gelen hareketin dişliler aracılığıyla millere ve sistemlere aktarıldığı hareket iletim sistemidir. Eski tip dokuma makinelerinde kullanılan bir sistemdir. Fakat direkt hareket iletiminde, endirekt hareket iletimine göre hareket kaybının çok daha az olması nedeniyle direkt hareket iletimi tekrar gündeme gelmektedir.

Hafif tezgâhlar direkt hareket sistemi ile çalışır. Makine durduğunda motor şalteri avaraya bağlı olduğundan motora verilen enerji kesilir. Avara açıldığı zaman motora gelen enerji motoru ve tezgâhı çevirir. Bu sistemde motordaki dişli ara dişliler aracılığıyla krank dişlisine bağlıdır. Arada kavrama yoktur. Hareket motor kasnağından avara kasnağına verilir. Kavrama ise avara kasnağındadır.

0102dok

Dokuma makinelerinde motor devrinin ilk çalışma anından duruş anına kadar aynı olması istenir. Aksi taktirde duruştan sonra atılan atkılar yeterince güçlü bir şekilde tefelenemez ve bu da duruş izi hatasına neden olur.

Selvo motor teknolojisi olarak adlandırılan yeni tip motorlar bir motor devri gibi kısa bir sürede tam güce ulaşabilme özelliğine sahiptir. Bunu sağlayan motorla tek parça olarak üretilen hız kontrol ünitesidir. Bu nedenle kontrol motorları olarak da anılmaktadır. Picanol firması tarafından geliştirilen Super Motor (sumo) direkt hareket iletimi prensibi ile çalışan modern dokuma makinelerine örnek olarak verilebilir.

Selvo motor teknolojisinde kavrama kayışı, hız makarası, elektromekanik mil ve kayış tertibatları yer almamaktadır. İlk anda oluşan devir ile duruş izi hatası meydana gelme oranları önemli ölçüde düşmüştür. Ayrıca atkı atma ve ağızlık arama daha hızlı bir şekilde yapılabilir.

Hareketin doğrudan iletilmesini sağlayan konstriksüyon yapısı aynı zamanda makinenin iskeletinin daha az parçadan meydana gelmesini sağlar.

DOKUMA MAKİNELERİNDE  ENDİREKT HAREKET İLETİMİ

Motordan gelen hareketin mil ve sistemlere kasnak ve kayışlar aracılığıyla iletildiği hareket iletim sistemidir. Direkt hareket iletimine göre daha yaygın olarak kullanılmaktadır. Kasnak ve kayışla sağlanan hareket iletiminde görülen en önemli sakınca devir kaybıdır. Günümüzde bu kaybı en aza indirmek amacıyla ‘V’ kayışı kullanılmaktadır. V kayışı kasnak oyuğunun her iki tarafına da iyice oturduğundan devir kaybı az olmaktadır.

0103dok

ANA MİL

Dokuma makinelerinde krank ve eksantrik mili olmak üzere iki ana mil vardır. Bunlardan krank milinin görevi motordan gelen hareketi dokuma makinesine dağıtmaktır. Eksantrik mili ise genellikle ağızlık açma sistemlerine hareket verir. İçten eksantrikli ağızlık açma sistemlerinde ayrıca bu mile paralel olarak dolap mili bulunur. Krank mili iki devir yaptığında eksantrik mili bir devir yapar.

0104dok

 ÇÖZGÜ KÖPRÜSÜ VE ÇÖZGÜ SALMA SİSTEMLERİ

Çözgü ipliklerinin sarılı olarak bulunduğu büyük makara biçimindeki dokuma makinesi parçası çözgü levendidir.

0105dok

Çözgü köprüsü de çözgü levendinden gelen ipliklerin yönünü değiştirip paralel olarak kumaş levendine sevkini sağlayan dokuma makinesi elemanıdır. Kumaş köprüsü ile aynı doğrultudadır. Çerçeveler aynı hizada durduğunda çözgü ve kumaş köprüleri arasındaki çözgü iplikleri yere paralel durumdadır. Çözgü köprüsü hareketli veya sabit olabilir.

0106dok

Hareketli olması yani ağızlık açılması anında makinenin iç kısmına doğru hareket etmesi çözgü ipliklerinin gerilmeden dolayı kopmasını önler Dokuma yapıldıkça çözgü ipliklerinin çözgü levendinden sevk edilmesi gerekir.Çözgü salma sistemleri çözgü ipliklerinin çözgü levendinden sevk edilmesini sağlayan sistemlerdir. Atkılar çözgülere bağlandıkça, tezgâhtaki çözgü boyu kısalacağından levende sarılı çözgü iplikleri ileri doğu bırakılarak gerekli çözgü uzunlukları dokuma tezgâhına beslenir.

NEGATİF ÇÖZGÜ ( SALMA ) BOŞALMA TERTİBATI

Dokuma sırasında atkının atılması ile atılan atkı kalınlığında çözgü boşalır (salınır). Bu nedenle negatif kesin olmayan anlamına gelir. Genellikle ağırlıklı ve yaylı sistemler negatif çalışır. Bu sistemde çözgü levendinin döndürülmesi yani çözgü salma işlemi çözgü gerginliği yardımıyla yapılır. Kumaş oluşumu sırasında sürekli olarak çekilen çözgü iplikleri gerginliği giderek artar ve bu gerginlik kuvveti çözgü levendini bir miktar döndürür. Çözgü levendinin dış kenarına urgan veya banda bağlanmış olan karşı ağırlıklar takılır. Çözgü gerginliği ölçümü söz konusu değildir. Negatif çözgü salma sistemindeki çözgü gerginliği sürekli artıştan sonra ani bir düşüş şeklinde değişim gösterir. Bu değişimin periyodu karşı ağırlığın yeri değiştirilerek sağlanır. Ancak ağırlıklarla ilgili her değişim çözgü gerginliğinde ani değişimler meydana getirir. Bu da kumaş çizgisinde değişme dolayısı ile sık seyrek hatalara sebep olabilir.

POZİTİF ÇÖZGÜ ( SALMA ) BOŞALMA TERTİBATI

Dokuma sırasında makinenin her devrinde atkı atılsın veya atılmasın belirli bir oranda çözgü boşalır. Boşaltılan bu miktar atkı sıklığına göre ayarlanır ve dokumanın sonuna kadar sabit kalır. Bu nedenle pozitif sistemler genellikle dişliler ve kollardan oluşur. Çözgü ipliklerinin normal çalışma anında eşit bir gerginlik altında çalışması gerekir. Bu gerginlik çerçevelerin kalkması ve mekiğin atılması yönünden çok önemlidir. Pozitif çözgü salma sistemleri makine üzerindeki çözgü gerginliğini de dikkate almaktadır. Çözgüde herhangi bir gerginlik değişikliği olduğu zaman çözgü köprüsü bu değişiklikten etkilenir.

0107dok

Çözgü köprüsüne ipliklerin yaptığı basınç, köprüye bağlı bulunan levyeler aracılığıyla çözgü salma regülatörlerine iletilerek çözgü gerginliği düzenlenir.

KENAR YAPICI SİSTEMLER

Dokuma kumaşlarda çözgü ipliklerinin kenarlardan dağılmasını önleyebilmek ve daha sonra göreceği işlemler sırasında kumaşın formunu koruyabilmek için kenar oluşturulur. Kumaş kenarları çözgü sıklığı, renk ve örgü bakımından kumaşın zemin kısmından farklıdır. Mekikli dokuma makinelerinde atkı ipliği masura üzerinden kesintisiz olarak sağıldığı için kumaşlarda kenar kendiliğinden oluşur. Bu tip kenarlara gerçek kenar denir.

Devamını oku: Dokuma Makinelerinin Ana Elemanları

Dokuma Hazırlık

Dar Dokuma

 
 
 
 
 
06dardok
 
 
 
Dar kumaşlar yapılarına ve kullanım yerlerine göre; lastik, şerit, kordon olarak adlandırılan, 0,5 cm’den 50 cm’ye kadar genişlikte dokunarak ya da örülerek elde edilen eni dar malzemelerdir. Tek başlarına kullanımı olmayan bu malzemeler hazır giyim yan sanayinin olmazsa olmaz elemanlarıdır. Dar dokuma makineleri; iç giyimden, ev tekstiline ve teknik dokumalara kadar birçok alanda tekstil yüzeyi elde edilmesinde kullanılmaktadır.
 
 
 
09dardok
 
 
Dar dokuma sektörü bir anlamda hizmet ürettiği sektörlerin yan sanayisidir.Hazır giyim sektörü dışında ayakkabı, otomobil, savunma, elektroteknik, sağlık ve emniyet sektörlerinde kullanım alanı bulan dar dokumalar, elastik veya şerit şeklinde dokunur. Dar kumaşlarda kullanılan iplik çeşitlerine göre ( pamuk, polyester, viskon, polipropilen, naylon ) kurdele, grogren şerit, yatak şeridi, balıksırtı gibi diğer dokumalar da görülür.
 
 
 
10dardok
 
 
Dar dokuma kurdela, kuşak, lastik, etiket benzeri dar enli ve özel kullanım alanına sahip dokumaların üretiminin yapıldığı bir dokuma üretim sistemidir. Dar Dokuma Makinelerinin Gelişimi ve Teknik Özellikleri Dar dokuma, dokuma sistemiyle kumaş oluşturulmaya başlandığı dönemlerden günümüze kadar gelişerek gelmiştir. Geleneksel el dokumalarımızdan olan “çarpana” dokumalar el sanatlarımız içinde dar dokumacılığa örnek gösterilebilir. Dar dokumacılığın gelişimi sürecinde el dokuma tezgâhlarında da dar dokuma kumaşlar dokunmaktaydı.
 
 
 
 
12dardok
 
 
 
 
 
11dardok
 
 
1600’lü yıllarda Hollandalıların icat ettiği “buth engine” olarak adlandırılan mekanik dokuma makinelerinden esinlenerek mekanik dar dokuma tezgâhları icat edilmiştir. Bu tezgâhlar kol gücüyle çalışan çok kafalı tezgâhlardı. Ayrıca mekanik dokuma tezgâhlarından farklı olarak tefe ve atkı atma sistemleri değiştirilmiştir. 19.yüzyılda dokuma makineleri mekikli sistemlere geçmiştir ve bu makineler, iğneli sisteme geçilene kadar kullanılmıştır. 1950’li yıllarda dar dokuma makinelerinde iğneli atkı atma sisteminin gelişmesiyle büyük bir aşama kaydedilmiştir. 1975’li yıllardan sonra dokuma makinelerinde kullanılan ağaç aksamlar yerlerini mekanik aksamlara bırakmış ve makinelerin gelişimi hız kazanmıştır.
Günümüzde artık tam otomatik ve bilgisayar kontrollü dar dokuma makineleri de kullanılmaktadır. Dar dokuma makineleri normal dokuma makinelerinden farklıdır. Bu fark üretilen kumaşların farkından kaynaklandığı gibi dokuma makinelerinin teknik özelliklerinden de kaynaklanmaktadır.
 
 
02dardok
 
 
 
 
03dardok
 
 
Dar dokuma makineleri oldukça yüksek hızda çalışırlar. Bu özelliklerinden dolayı üretim hızları ve randımanları yüksektir.Dokunan kumaşın eninin küçük olması nedeniyle dokuma makinesi üzerinde birden fazla sayıda kumaş aynı anda yan yana dokunabilmektedir.
 
 
 
04dardok
 
 
Dokuma makinesi ve dokunacak yüzeyin özelliğine göre bu sayı 2 ile 14 arasında değişebilmektedir. Dar dokuma makinelerinde aynı anda farklı renklerde kumaş dokuma yapılabilir. Dar dokuma makinelerinde tip değişimi diğer makinelere oranla daha kolaydır. Aynı makinede farklı tipte dokuma yapma özelliği diğer makinelere göre daha esnektir.Diğer dokuma makinelerine oranla ebatları küçük olduğundan daha az yer kaplar ve daha sessiz çalışır.Dokuma hazırlık işlemleri daha kısa sürede gerçekleştirilir.
 
 
01dardok
D
 
AR DOKUMA ÇÖZGÜ HAZIRLAMA :Dar dokuma makinelerinde kullanılacak çözgüler, seri çözgü hazırlama tekniğiyle dar dokuma makinelerine özel çözgü makinelerinde hazırlanır. Yapılan işlemler konik ve seri çözgü hazırlanmasında olduğu gibidir.
 
 
 
13dardok
 
 
En önemli farkı, çözgü makinesinin ve çözgü levendinin boyutlarıdır. Bir başka farkı da kullanılan toplama ve çapraz taraklarının farklı tipte olmasıdır. Çözgü için mekanik ya da elektronik çözgü makineleri kullanılmaktadır. Teknolojileri üretici firmalara göre değişiklik göstermektedir.
 
 
14dardok
 
DAR DOKUMA MAKİNELERİNİN ANA SİSTEMLERİ
 
 
16dardok
 
 
Ana Gövde: Dokuma makinesi sistemlerini üzerinde taşıyan kısımdır.
Ana Hareket Mili: Motordan aldığı hareketi diğer kısımlara ileten mildir.
Dar dokuma eksantrik sistemi: Eksantrik sistemiyle desenlendirme sekiz zamanlı olarak oluşturulur. Her zaman dilimi bir hareketi gösterir. Sekiz zamanı geçen desenlerde bakla sistemi kullanılır.
Dar dokuma bakla sistemi: Çerçevelere hareket veren, hangi atkıda hangi çerçevenin hareket edeceğini belirleyen sistemdir. Bakla sisteminde hareket on altı zaman diliminde düzenlenir. Sistemde üç değişik bakla çeşidi vardır. Bu baklaların yerleştirilmesine göre desen oluşturulur.Dar dokuma makinelerinde ağızlık açılması, eksantrik ve bakla sistemiyle olduğu gibi jakarlı ağızlık açma sistemleri ile de olmaktadır.
Dokuma Kafası: Atkı iğnesi, kenar örücü iğne, dokuma tarağı, kumaş baskı elemanını üzerinde taşıyan kısımdır. Dokunacak her bant için bir dokuma kafası bulunur. Dokunacak bant genişliğine ve tezgâh özelliğine göre sayısı değişebilir.
Kumaş Çekme Mekanizması: Dokunan kumaşın gerginliğinin sağlandığı ve kumaş toplama kovalarına yönlendirildiği kısımdır. Burada yapılan gerginlik ayarı ile kumaşın atkı sıklığı düzenlenir. Dokunan kumaşın cinsine göre alüminyum ya da kauçuk silindirlerden oluşur.
Atkı Verici Sistem: Atkı cağlığına takılan bobinlerden gelen iplik varyatör adı verilen sistemden geçirilir. Varyatörden geçirilen atkı ipliği örücü kanca ucundaki gözden de geçirilerek kumaşa atkı atılması sağlanır.
Kenar Yardımcı Verici Sistem: Kenar oluşumu için yardımcı ipliğin bulunduğu dokumalarda kullanılır. Bobinden gelen iplik, gerginliğin sağlandığı yönlendiricilerden ve dokuma tarağından geçirilerek kumaşa dâhil edilir..
Çerçeveler: Çerçeveler çözgü ipliğini taşıyan ve armür ya da eksantrik sistemiyle ağızlığın oluşmasını sağlayan kısımdır. Çerçeveler hareketlerini bakla ya da eksantriklerden alır. Ağızlık açıldıktan sonra çerçeveler eski yerlerine yaylar sayesinde döner.
Levent Cağlık Sistemi: Çözgü leventlerinin dizildiği kısımdır. Leventler, cağlığa dizildikten sonra gerginliği sağlayan ağırlıkların takılı olduğu çubukların altından ya da üstünden geçirilerek arka tarağa doğru yönlendirilir.
Çözgü Kontrol Sistemi: Çözgü ipliklerinin üzerine yerleştirilen lamelleri taşıyan, çözgü ipliği koptuğunda tezgâhı durduran sistemdir.
 
 
07dardok

 

 

DAR DOKUMA MAKİNELERİNDE ATKI ATMA SİSTEMİ :Dar dokuma makinelerinde normal dokuma makinelerinden farklı olarak atkının atılması kanca ya da iğne adı verilen mekikle yapılır.

 

 

18dardok

 

 

 

Atkı iğnesi, çelikten yapılmış kanca biçiminde ve ucunda göz bulunan bir parçadır. Tezgâhta bulunan her bant için ayrı ayrı bant sayısı kadar atkı iğnesi bulunur. Atkı cağlığındaki bobinlerden gelen atkı ipliği iğnenin ucunda bulunan gözden geçirilir.

  

19dardok

 

İğnenin ağızlık içinde gidip gelmesiyle atkı ipliği ağızlığa atılır. İğnenin gidip gelmesiyle ağızlıkta oluşan iki atkı ipliği, bir atkı sayılır. Atkı iplikleri kumaş kenarlarında kesilmez.

 

15dardok

 

Atkılar atıldığı tarafın karşı kenarında kenar oluşturan iğne tarafından örülerek sabitlenir. Kenar örücü sistemler dokunan kumaş cinsine ve özelliğine göre farklı şekillerde kenar oluşturur.

 

17dardok

 
DAR DOKUMA LASTİK ÖZELLİKLERİ
Lastikler, çözgü yönünde uzama oranı, kullanılan elastik iplikler nedeniyle çok yüksek olan ve bu uzamayı sağlayan kuvvetin ortadan kaldırılmasıyla, ilk boyuna dönen dar dokuma ürünlerdir. Dar dokuma lastikler, esneme ve yırtılmaya karşı çok dayanıklı olan elastan iplik veya gipe iplik (elastik ipliğin başka bir iplikle sarılması veya puntalanmasıyla oluşan iplik) kullanılarak dokunur. Elastan iplik olarak genellikle özel tel lateks iplikler (yapısında doğal veya sentetik kauçuk bulunan iplikler) kullanılır. Lateks iplikler çözgü iplikleri arasına istenilen oranda yerleştirilir. Bu orana bağlı olarak yani lateks sayısına göre, lastiklerin sertliği ve esnekliği değişmektedir. Lastik üretiminde çözgü ipliği olarak genellikle pamuk, atkı ipliği olarak da polyester veya naylon iplikler kullanılmaktadır. Dar dokuma lastikler 0,5 cm ile 8 cm arasında değişen ölçülerde dokunabilir. Tek renk ve desensiz dokunabildikleri gibi yazı karakterli, logolu veya amblemli olarak da dokunabilir. Bu tür lastikler, bilgisayar üzerindeki özel jakar programı ile çizilen desenlerle, jakarlı dar dokuma makinelerinde dokunur. Dar dokuma lastikler isteğe bağlı olarak kontini boyama sistemi ile boyanır ve ütülenir. Yine isteğe bağlı olarak sertleştirme işlemi yapılabilir. Bu işlem genellikle, etek ve şortların bel kısımlarında kullanılacak lastiklere uygulanır. Dar dokuma lastiklerin yıkama haslığı, ter haslığı, sararma haslığı ve ışık haslıklarının kullanım alanlarına uygun olarak iyi olması gerekmektedir. En az beş yıl özelliklerini kaybetmemeleri beklenir. Giysilerin genellikle bel, paça, yaka hattı, kol ağzı gibi yerlerinde kullanılan, büzme ve bedene oturtma gibi işlevleri olan lastikler ayrıca süsleme amacıyla da kullanılırlar. İç giyim sektöründe sütyen askısı, külot bel ve paça lastiği, boxer şort lastiği, jartiyer ve çorap lastiği olarak kullanılan lastikler, dış giyimde de eşofman lastiği, mont etek bel lastiği ve pantolon askısı olarak kullanılır. iç ve dış giyimin dışında dar dokuma lastikler ayakkabı sektöründe (terlik lastiği, mesh lastiği vb. ), otomotiv sektöründe (emniyet kemeri, bagaj lastiği) ve sağlık sektöründe (elastik bandaj) kullanılmaktadır. Dar dokuma lastiklerin kenarları diğer dar dokumalarda olduğu gibi genellikle birbirinden farklıdır. Kenarlardan biri yardımcı iğne sistemi ile oluşturulur. Bu sistem dokuma türüne göre ayarlanır. Yardımcı iğne sisteminde ayrı bir örme iğnesi, yardımcı iplik olmadan veya bir ya da iki yardımcı iplikle atkı ipliğinin kombinasyonu sonucu örülerek kenar oluşturulur. Yardımcı iğne ve yardımcı iplik sistemiyle dokunan dar dokumalar sadece tek yönden sökülürler. Kenar oluşumunda beş değişik yardımcı iğne sistemi vardır.
Sistem 1 (yardımcısız sistem): Atkı ipliği kendi kendine bağlanır. Düzgün kenar özelliği aranmayan dokumalarda kullanılır.

 

26dardok

 
Sistem 2 (yardımcılı sistem): Atkı ipliği, yardımcı iplik ile bağlanır. İnce kenarlı dokumalarda kullanılır.

 

27dardok

Sistem 3 (atkı+yardımcılı sistem): Atkı ipliği ve yardımcı iplik birbirini bağlar. Kalın kenar özelliği aranmayan, sağlam özellik aranan dokumalarda kullanılır.

 

28dardok

 
Sistem 4 (iki yardımcılı sistem): Atkı değişimli olarak iki yardımcı iplik ile bağlanır. İnce kenar özelliği aranan dokumalarda kullanılır.

 

29dardok

S
istem 5 (iki yardımcılı ve kilitleme iplikli): Atkı ipliği yardımcı iplik ile ve ilave olarak kilitleme ipliği ile bağlanır. Kenarın görünmesinin istenmediği çok hassas dokumalarda kullanılır.

 

30dardok

 

Ağızlık açma sistemleri içinde en üst seviyeyi jakarlı ağızlık açma makineleri temsil etmektedir. Bu makinelerde en karmaşık desenleri, resimleri veya manzaraları dokuyabiliriz. Bu geniş desenleme imkânı, sistemin çok fazla sayıda çözgü ipliğine ayrı olarak hareket verebilmesinden kaynaklanmaktadır. Jakar sistemi diğer sistemlere oranla değişik bir yapı gösterir. Eksantrik, armür sisteminde ağızlığın oluşumu için çözgü ipliklerine çerçeve gruplarınca hareket verilir. Jakar sisteminde ise ağızlığın oluşumu için platinlere bağlı malyon gruplarıyla kumanda edilir. Bu nedenle jakar sistemi desen yapma olanakları açısından eksantrik ve armür sistemlerine göre çok büyük desen gruplarının dokunmasına imkân sağlamaktadır.

 

Jakar makineleri tek tomruklu ve çift tomruklu olarak iki sistemde incelenir.
 
 
Dokuma tezgâhının üzerine dikey olarak kurulan bir ağızlık açma aparatıdır. Ayrıca makine kusursuz mekanik özellikleri ile bize çok değişik desenli kumaşlar yapma olanağı tanımıştır. Jakar makinesi bir seri iğne (desen okuyan ve makineyi programlayan) bir seri platinden (maylonlar aracılığı ile ağızlık açılmasını sağlayan) oluşmuş bir sistemdir. Herhangi bir dokuma tezgâhı birtakım değişikliklerle birlikte üzerine jakar makinesi takılarak jakarlı dokuma tezgâhına dönüştürülebilir.
 
 
jakar26
 
 
Jakar mekanizması, dokuma makinesine ek olarak kurulan bir aparattır. Eğer makinede jakar sistemi iptal edilirse makine eksantrik veya armür sisteminde çalıştırılabilir. Jakar sistemi ile dokuma makinesi arasında şu ilişki mevcuttur.
  • 1-Dokuma tezgâhı jakar makinesine hareket verir.
  • 2-Jakar makinesi çalışarak maylonlar aracılığı ile dokuma tezgâhına ağızlık açar.
Çözgü ipliklerini gruplar hâlinde kumanda ederek ağızlık açmayı, çeşitli motifler ve şekiller elde etmeyi sağlayan jakar sisteminin diğer ağızlık açma sistemlerine göre en büyük farkı çözgü ipliklerinin her grubu (bir platine bağlı malyonlar) için hareket verilmesidir. Armür ve eksantrikli ağızlık açma sistemlerinde ise çözgü iplikleri üzerinde bulunduğu çerçeve ile bağımlı hareket etmektedir.
Diğer ağızlık açma sistemlerinde çerçevelerin sayısı ile sınırlı olan değişik çözgü hareketi, jakar sisteminde platin sayısı ile sınırlıdır. Yani Jakarlı dokuma makinesindeki örgünün büyüklüğü jakar makinesindeki platin sayısı kadardır. Ayrıca malyon dizimlerini değişik şekillerde yaparak örgü raporunu büyütme olanakları vardır.
 
 
jakar27
 

 

J

akarlı ağızlık açma sisteminde iki temel hareket vardır:

1-Tomruğun sağ sol hareketi:

 

Atılan her atkıda bir miktar dönerek kartonu hareket ettirir. Ayrıca tomruk iğnelere doğu kartonları iterek kartonun okunmasını sağlar.

2-Bıçakları aşağı yukarı hareketi:

 

İğneler ve platinlerden aldığı hareketi malyon ipliklerine ve dolayısıyla gücülere ileterek ağılığı açılmasını sağlar. Aşağıda jakar makinesinin ana elemanları görülmektedir.

 

 

jakar28
 
MEKANİK JAKARLI AĞIZLIK AÇMA SİSTEMİNİN ELEMANLARI
 
 
1-Tomruk:
  • Üzerinde iğneler veya platin sayısı kadar delik bulunan dörtgen, altıgen veya yuvarlak (silindir) şeklinde olan parçadır. Görevi, jakar desenine göre delinmiş bulunan kartonları her atkı için bir sonraki okunacak harekete hazır hâle getirilmesidir.
 
 
2-Jakar kartonları
  • Jakar kartonu çözgü ipliklerinin istenilen şekilde hareket etmesi amacıyla iğnelere hareket veren ve üzerine desene göre delik delinen, çalışmaya elverişli plastik veya kâğıtlardır. Genel özellikleri bakımında iki türü bulunmaktadır. Bunlar parçalı ve sonsuz kartonlardır.
Parçalı karton:
  • Her atkı için ayrı bir karton olup bu parçalar birbirine dikilip sonsuz hâle getirilerek kullanılır. Kullanım sırasında ve delim sırasında birçok sorun oluşturmaktadır.
Sonsuz karton (Verdol):
  • Desende kullanılan bütün atkılar aynı karton üzerine delinerek kullanılır. Bu kartonun hem delim aşamasında hem de çalışma aşamasında kullanımı kolaydır. Sonsuz karton için plastik veya kâğıt malzeme kullanılmıştır.
 
 
 
3-İğneler:
  • Kartondaki dolu ve boş noktalara göre platinlere hareket veren parçalardır. Eski jakarlarda tek grup iğne varken günümüz mekanik jakarlarında çelik iğne, faturalı iğne ve uzun iğne olmak üzere üç çeşit iğne kullanılmaktadır. Uzun iğnelerin arkasında, geriye itildiklerinde sıkışan baskı kalktığında tekrar eski yerine iten yaylar vardır. Bu yaylar yay kutusu içine toplanmıştır. İğneler, platinlere göre dik, jakar makinesine göre yatay konumda yer alır.
4-Platinler:
  • Jakar makinesinin temel elemanıdır. İğneler yardımıyla üst kısımları sağa sola hareket edebilir. Örgüde dolu (çözgü yukarıda) ise bıçakları etki alanında kalır veya örgü boş ise (çözgü aşağıda) etki alanından itilir. Eski tiplerde tek kancalı yeni makinelerde çift kancalı modeldedir. Jakar üzerindeki platin sayısı jakar kapasitesini gösterir.
5-Bıçaklar:
  • Ağılı açılabilmesi için çözgü ipliklerinin yukarı kaldırılması gerekir. Daha öce bahsedildiği gibi çözgü ipliklerinin yukarı kaldırılmasını platinler ve buna bağlı olan malyon iplikleri yapar. Kısaca ağılı aça, platinlerin yukarı kaldırılması ile sağanı. Platinlerin yukarı hareketini sağlayan jakar elemanına bıçak denir. Jakar makinesinde platin sırası kadar bıçak vardı. Bu bıçaklara tek yerden hareket vermek ve hareket bütünlüğü sağlamak amacı ile çerçeve biçiminde bir araya toplanmıştır. Buna bıçak tablosu denir. Bıçak tablosu, bıçak eksantriğinden aldığı hareketle jakar iskeleti içinde aşağıdan yukarı hareketle platinleri kaldırır indirir. Kullanım yerlerine göre tek bıçak tablosu jakar makineleri olabileceği gibi birbirinden farklı zamanda hareket eden yani, biri aşağıdan yukarı doğu çalışırken diğeri yukarıdan aşağıya çalışan iki adet bıçak tablosu olan jakar makineleri de vardır. Tek bıçak tablolu makinelerde, tek kancalı platinler kullanılır. Platinlerin kancası bıçağa dönüktür ve onun hareket alanı içindedir. Ayrıca çift bıçak tablolu jakar makineleri diğerine nazaran daha verimlidir.
 
 
6-Havan tahtası:
  • Üst harnıç da denir. Platinleri taşıyan ve üzerinde küpe delikleri bulunan tahtadır. Havan tahtası platinlere dayanak olmakla birlikte onların dengesini sağlar. Bazı jakarlarda hareketli, bazılarında sabittir. Hareketli olanlarda ağızlık açılması sırasında aşağıya doğru inerek düzgün ağızlık açılmasını sağlar.
 
7-Malyon ızgaraları:
  • Malyonların ve küpelerin rahat çalışabilmesi için cam çubuklardan yapılmış ızgaralardır. Malyon iplikleri bu ızgaralarda yönlenir. Bunların bir diğer görevi de malyon ipliklerini korumak ve aşınmasını önlemektir.
 
8-Malyon tahtası:
  • Alt harnıç veya dizim tahtası da denir. Malyon tahtası kumaşın enini ve sıklığını tayin eder. Üzerinde malyon ipliği sayısından daha fazla delik vardır. Her delikten bir malyon ipliği geçer. Yapılan malyon dizimleriyle, çözgü yoğunluğu ve kumaş üzerinde desenin kaç rapor olduğunu belirler.
 
 
9-Küpeler:
  • Malyon iplikleri ile platinleri birbirine bağlar. Dizim değişimlerinde ve aşınma durumlarında malyonların platinlere direkt olarak bağlanması güçtür. Bu durumda küpeler büyük kolaylık sağlar. Metal veya plastikten yapılmışlardır.
 
 
10-Malyon iplikleri:
  • Çözgü ipliklerinin sistemli olarak bir kısmının yukarıda bir kısmının da aşağıda kalmasını sağlayan ve platinlerden hareket alan jakar elemanlarıdır. Alt kısımlarında gücü telleri bulunur. Keten ipliği olarak da isimlendirilir.
 
 
  • Naylon, misine ya da örme iplik olarak hazırlanır.
  • Sürtünmeye karşı dayanıklıdır.
Malyon gücü bağlantı koruyucu:
  • Malyon tahtasından geçen iplikler, gücü tellerinin üst tarafından bağlanır. Yapılan bu bağlantılar yoğunluktan dolayı birbirlerine sürtünür. Bu sürtünmelerin azaltılması ve takılmaların önlenmesi için bağlantıların üzerine hortumlar geçirilerek malyon ipliklerinin gücü tellerine kolay ve sağlıklı şekilde bağlanmaları sağlanır.
Gücüler:
  • Gücü telleri çözgü ipliklerinin ağızlık açmasını sağlayan ortalarındaki gücü gözlerinden çözgülerin geçirildiği teldir. Alt kısmından ağırlıklara, yaylara veya lastiklere üst kısmından da malyon ipliklerine bağlanır.
Gücü malyon geri çekme elemanları:
  • Örgüye göre yukarıya kalkmış olan gücü tellerini ve malyonları tekrar aşağıya çekmeye yarayan jakar parçasıdır. Bu parçalar çözgü ipliklerinin kalınlığına ve dokuma türüne göre değiştirilir. Üç çeşit geri çekme elemanı vardır.
Bunlar: demir çubuklar (ağırlıklar), lastikler ve yaylardır.
 
 
11-Malyon gücü bağlantı koruyucu:
  • Malyon tahtasından geçen iplikler, gücü tellerinin üst tarafından bağlanır. Yapılan bu bağlantılar yoğunluktan dolayı birbirlerine sürtünür. Bu sürtünmelerin azaltılması ve takılmaların önlenmesi için bağlantıların üzerine hortumlar geçirilerek malyon ipliklerinin gücü tellerine kolay ve sağlıklı şekilde bağlanmaları sağlanır.
12-Gücüler:
  • Gücü telleri çözgü ipliklerinin ağızlık açmasını sağlayan ortalarındaki gücü gözlerinden çözgülerin geçirildiği teldir. Alt kısmından ağırlıklara, yaylara veya lastiklere üst kısmından da malyon ipliklerine bağlanır.
 
13-Gücü malyon geri çekme elemanları:
  • Örgüye göre yukarıya kalkmış olan gücü tellerini ve malyonları tekrar aşağıya çekmeye yarayan jakar parçasıdır. Bu parçalar çözgü ipliklerinin kalınlığına ve dokuma türüne göre değiştirilir.
Üç çeşit geri çekme elemanı vardır.
  • Bunlar: demir çubuklar (ağırlıklar), lastikler ve yaylardır.
 
MEKANİK JAKARIN ÇALIŞMA PRENSİBİ :
  •  Mekanik jakar sisteminde her atkı için çözgü telleri jakar kartonu üzerine delikler açılarak desen yazılır.
  • Yukarıda kalması gereken çözgü ipliği için karton üzerinde delik açılır.
  • Jakar kartonu tomruk üzerinde bulunur.
  • Tomruk her atkı atıldığında bir tur dönmektedir.
  • Tomruk her dönüşünde iğnelere doğru hareket ederek kartonun iğneler tarafından okunmasını sağlar.
  • Delik olmayan yerlere temas eden iğneler ise kartonun hareketi ile itilir.
  • Kartondaki deliklere gelmeyen iğneler sağa doğru kayar kendilerine bağlı platinleri de sağa iter.
  • Böylece bıçakları hareket alanının dışına çıkarır.
  • Sağa doğru itilen platinlerin karton baskısı kalktığında tekrar yerine gelmesi, platinlerin esnekliği ve iğnelerin arka uçlarında bulunan yaylarla gerçekleştirilir.
  • Kartonlardaki deliklere gelen iğneler ve bağlı bulunan platinler ise yerlerinden oynamadıkları için bıçakların hareket alanının içinde kalarak ağızlık oluşturmak üzere konumlanır.
 
Normalde platinler bıçakların hareket alanı içinde olduklarından bıçaklar yukarıya doğru hareketlerinde platinleri de kaldırır.
  • Bunun için desen kartonuna, yukarı kalkması istenen çözgülerin platinleri ve iğneleri için delik açılır.
  • Aynı şekilde atkının altında kalması istenen çözgü telleri için kartonun ilgili yeri delinmez.
Platinlerin yukarı kalkmasıyla birlikte alt uçlarına bağlı olan küpeler ve malyon iplikleri de yukarıya doğru hareket ederek gücüleri yukarı çeker.
  • Jakarlı dokuma makinelerinde ağızlığın açılması bu şekilde gerçekleştirilir.
  • Yukarıya kaldırılan çözgü ipliklerinin aşağı konumlarına tekrar gelmeleri ise geri çekme elemanları tarafından gerçekleştirilir.
Tek Stroklu Jakar
 
  • Bu tip jakar makinelerinde makinenin her devrinde bir atkı atılır.
  • Hızlarının düşük olması ve fazla güç gerektirdiğinden dolayı bu tip jakar makinelerinin kullanımı yok denecek kadar azdır.
  • Bu tip jakarlarda her çözgü ipliği için bir iğne ve bir platin bulunmaktadır.
  • Her iğne bir platini kontrol etmekte ve yay kutusundaki bir yay vasıtasıyla desen silindirine doğru itilmektedir.
Bu kaba hatveli (iğneler arasında mesafe) jakarların en basit olanıdır.
  • Bu makinelerde rapordaki her çözgü ipliği için bir iğne ve bir kanca bulunur.
  • Şekilde görüldüğü gibi her iğne bir kancayı kontrol etmekte ve yay kutusundaki bir yay vasıtasıyla desen silindirine doğru itilmektedir.
  • Bir kanca dizisini kaldırmak için bir bıçak olması ve örneğin 600’lük bir jakarda 12 bıçağın bulunması gerekmektedir.
  • Bıçakların tek olarak hareketlenmesi kranktan ya da zincir ile krank milinden tahrik edilir. Bıçaklar ve bağlı bulunduğu sistem her atkı için düşey olarak bir defa aşağı yukarı hareket eder.
Rapdaki her atkı için bir kart kullanılarak desen kartonları hazırlanmış durumdadır.
  • Kartlar birbirlerine dikilerek bağlanmışlardır.
  • Tomruk denilen desen kartının dönmesini sağlayan eleman dört köşeli olarak görülmektedir.
  • Ayrıca tomruklar silindir, dörtgen veya altıgen şekillerde imal edilmektedir.
  • Desen kartonu tomruk tarafından iğnelere doğru itildiği zaman karşısında delik olan iğne buradan içeri gireceğinden bastırılmayacak ve buna bağlı olan kanca konum değiştirmeyeceği için bıçağa takılarak yukarı kaldırılacaktır.
  • Kancanın kontrol ettiği çözgü iplikleri de atılacak atkı için yukarı kalkmış olacaktır.
  • Eğer iğnenin karşısına denk gelen delik delinmiş ise tomruk sola doğru geldiğinde bu iğne bastırılacağı için ilgili kancayı da sola doğru iterek bıçak yolundan çıkaracaktır.
  • Bıçak yukarı hareket ederken kancaya takılmadığından bu kanca ve kontrol ettiği çözgü iplikleri aşağıda kalacaktır.
Bu işlem tamamlandıktan sonra tomruk sağa doğru giderek iğnelerden uzaklaşır ve dönmesi için yeterli uzaklığa gelince bir sonraki atkı için gerekli olan desen kartı iğnelere uygulanacak şekilde bir devir yapar ve tekrar iğnelere doğru yaklaşmaya başlar.
 
 
  • Tek stroklu jakar makinelerinde genellikle altta kapalı ağızlık oluşur.
Bu nedenle hareket kaybı yaşanmaktadır. Ayrıca sistem yoğun çalıştırılmakta sarsılmaktadır. Tomruk silindiri her atkı için hareket etmekte, bıçak şasesi inip çıkmaktadır. Bunlar makinenin hızının düşmesini sağlayan sebepleri oluşturmaktadır.
 
Çift Stroklu Jakar

  • Makinenin her devrinde iki atkı atılır.
  • Dokuma makinelerinde en çok kullanılan jakarlı ağızlık açma çeşididir.
  • Her biri ayrı şaseye monte edilmiş iki bıçak grubu bulunmaktadır.
  • İki şase, zıt yönde ve iki atkılık kurs içerisinde yukarı aşağı hareket etmektedir.
  • Bu makinelerde her iğne iki kancayı kontrol ettiğinden 600’lük bir jakarda 1200 kanca bulunmaktadır.
  • Tek stroklu jakardaki boşa harcanan enerji bu makinelerde daha azdır. Makinenin hızı daha yüksektir.
 
JAKAR KARTONUNUN HAZIRLANMASI

  • Jakar kartonları, iğnelere hareket vererek istenen örgü raporuna göre çözgü ipliklerinin aşağı yukarı hareket etmesini gerçekleştirir ve ağızlık açılmasını sağlar. Jakar kartonları bu işlevi görebilmesi için makinelerde desene göre delinir. Kartonlar mekanik ve elektronik olarak iki şekilde delinir.
JAKAR DİZİMLERİ
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  • Dokuma makinelerinde artan maliyeti düşürme, kalite verimlilik, desen yazımının kolaylığı arayışları elektronik jakarlı makinelerin kullanımını yaygınlaştırmıştır.
  • Özel modüller, elektronik kartlar ve elektro mıknatıslar kullanılarak sağlanan malyon hareketi sonucu yapılan jakarlı ağızlık açma işlemine elektronik jakar denir.
 
 
  • Genel olarak bütün elektronik jakarlar, hata bulma sistemine sahiptir.
  • Bu özellik güvenilirlik ve bakım onarım kolaylığı sağlar.
  • Ayrıca birden fazla elektronik jakar tek merkezden kontrol edilebilme avantajına sahiptir.
  • İşletmede bulunan merkezî bilgisayar ile elektronik jakar arasındaki iletişim ağı sistemiyle üretim verilerine ulaşılabilir. Elektronik jakarlarda mekanik jakarda olduğu gibi tomruk, karton ve iğneler yoktur.
Bilgisayarlı jakarın sağladığı avantajları şöyle sıralayabiliriz:
 
  • Mekanik parçaların azalmasından dolayı makine bakım ve onarım maliyeti daha düşüktür.
  • Dokunacak kumaşta hata oranı çok düşüktür.
  • Desendeki hataların düzeltilmesi daha kolaydır.
  • Numunenin desenlendirme ve dokunma süresi azalarak zamandan kazanım gerçekleşmiştir.
  • Desen kartonuna ihtiyaç kalmamış, karton delme ve maliyeti ortadan kalkmıştır.
  • Kartonların saklanması ve korunma maliyeti yoktur.
 
 
  • Elektronik jakar, mekanik jakara göre daha farklı elemanlara sahiptir.
  • Elektronik jakar modüllerden oluşur.
  • Modüllerin makinedeki görevi, elektronik veriyi mekanik veriye (bilgisayardaki deseni, mekanik harekete) dönüştürerek ağızlık oluşumunu sağlamaktır.
 
 Elektronik jakarın elemanları
 
1-Makine takımı:
  • Platinlerden gelen okuma hareketlerini küpelere aktaran ara bağlantı parçalarıdır.
 
 
2-Platinler (Çengeller):
  • Mandallardan ve bıçaklardan etkilenerek makaralara hareket veren parçadır.
3-Mandallar:
  • Elektro mıknatısın etki alanında bulunan ve desene göre açma kapanma hareketi yapan parçalardır.
4-Bıçaklar:
  • Desen hareketine göre mandallardan kurtulan platinlerin kancalı kısımlarına takılarak onları aşağı yukarı taşıyan parçalardır. Ağızlığın açılmasını sağlayan bıçaklardır.
5-Elektro mıknatıs:
  • Mandalların yardımı ile platinlerin kontrolünü sağlayan elektronik jakar parçalarıdır.
  • Verilen elektrik akımı ile içerisindeki sargılar yardımıyla mıknatıs alanı oluşturup mandalların hareketlenmesini sağlar.
  • Mıknatıslanma sırasında mandalın üst kısmı çekilerek alt ucuna da platinin takılması önlenmiş olur.
  • Harcanan enerji örgüye göre değişmektedir.
 
Elektronik Jakar Mekanizmasının Bakım ve Ayarı 
  • Jakarda bakım ve yağlama, genel bakım ve yağlama kuralları içinde ele alınmalıdır. Yağlamaya başlanmadan önce yağlanacak olan kısımların, uygun pozisyona getirilmeleri önemlidir. Yağlama, makinenin hareketli parçalarının düzgün ve yıpranmaya neden olmadan çalışması için yapılır.
Yağlama sıklıkları parçaların hareket yoğunluğuna göre tespit edilmiştir. Bu işlem için makinenin otomatik yağlama pompasından yararlanılır.
Elektronik jakarda, arızalanan modül çıkarılıp tamir edildikten veya bakımı yapıldıktan sonra tekrar yerine takılır. Modül yerine takılırken çalışma yönüne dikkat edilmelidir. Elektronik jakar makinelerinin avantajlarından biri olan bu durum, arıza anında bütün makinenin değil, sadece bozulan modülün tamir edilmesine olanak tanır.
Bilgisayar donanımlı dokuma makinelerinde makine ayarları ekranda kolay ve açık olarak gösterilir. Hatalar, işlem talimatları ve bakım aralıkları ekranda gösterilir.
Elektronik kontrollü jakar makinelerinde desenler bilgisayar programlarıyla yapıldığından mekanik sistemde bulunan karton ve karton delme makinelerine gerek kalmamıştır.
Elektronik jakar makinesi için oluşturulacak desen hazırlama çalışması iki türlü yapılmaktadır. Bunlar numune deseninin çıkarılması ya da yeniden bir numune desenini oluşturmadır.
Hazır bir kumaş numunesinin deseni üzerinde yapılacak işlemler şunlardır:
  • 1-Tarama
  • 2-Renklendirme
  • 3-Temizleme
  • 4-Desen boyutlandırma
  • 5-Desen üzerinde çalışma
  • 6-Atkı ve çözgü kalite bilgisi girişi
  • 7-Örgülendirme
  • 8-Simülasyon
  • 9-Renklendirme
Elektronik jakarda dokunması düşünülen örgü veya motif bilgisayar ortamında oluşturulur. Önce bölgelerin ve çizgilerin netleşmesi için temizleme işlemi yapılır. Örgü bölgelerine göre renklendirme yapılır. Kullanılacak örgüler seçilir. Örgü seçimi kumaşın üzerinde desenlerin oluşması açısından çok önemlidir. Çözgü ve atkı bağlantı noktaları örgünün ortaya çıkmasını sağlar. Desen hazırlama işlemi bittikten sonra dijital taşıyıcıya aktarılır. Bu taşıyıcı makine merkezi işlem birimine girilir. Kontrol ünitesi girilen desenle birlikte makinenin diğer bölümleriyle ilgili bilgileri de kontrol altında tutarak çalışır.
 
Elektronik Jakar Mekanizmasının Bakım ve Ayarlarını Yapma Sırasında Dikkat Edilecek Hususlar
 
Elektronik jakarda, arızalanan modül yerinden çıkarılıp tamir edildikten veya bakımı yapıldıktan sonra tekrar yerine takılır. Modül yerine takılırken çalışma yönüne dikkat edilmelidir. Elektronik jakar makinelerinin avantajlarından biri olan bu durum, arıza anında bütün makinenin değil, sadece bozulan modülün tamir edilmesine veya değiştirilmesine imkân tanır. Elektronik jakar mekanizmasında yapılacak olan bakım ve ayarlar sırasında sistemin makine üst kısmında bulunmasından dolayı makine, makine üzerinde varsa ürün ve çevre açısından daha dikkatli olması şarttır. Ayrıca genel uyulması gereken kuralları aşağıdaki şekilde sıralamak mümkün olacaktır.
  • 1-Dokuma makinelerinde kullanılan elektronik jakar sistemleri teknolojik olarak ileri seviyede makinelerdir. Bundan dolayı ayarları, çalıştırılmaları ve bakımları yapılırken büyük hassasiyet gösterilmelidir.
  • 2-İşlemleri yapmakla sorumlu olan personelin bakım ve ayarlar için gerekli olan talimatları, el kitabını dikkatli bir şekilde okuması, tam olarak anlaması ve verilen işlem basamaklarını izlemesi şarttır.
  • 3-Elektronik jakar sisteminin ayar ve bakımları yapılırken makine kesinlikle durdurulmalıdır.
  • 4-Elektronik jakar sisteminin yağının gerekiyorsa değiştirilmesi ve diğer bütün yağlama işlemlerinde temizliğin sağlanması gerekir. Etrafa saçılan yağ parçacıklarından dolayı en küçük kayma riski önlenmelidir.
  • 5-Elektronik jakar sisteminin bakım ve ayarını yapan yetkili elemanın kendisini basınçlı hava ile temizlemesi kesinlikle yasaktır.
  • 6-indirmek için makineden alınan kullanılmış yağ, yağ işleme tesisinde toplanmalı ve işlenmelidir.
  • 7-Elektronik jakar sisteminin sökülüp takılması sırasında parçaların, vida ve çeşitli tutucu elemanların tekrar eksiksiz yerine takılması ve uygun torklarda sıkılmaları şarttır. Yoksa vidaların çok sıkılması kırılmalarına, gevşek bırakılmaları da vidanın, parçanın çıkmasına ve daha büyük hasarlara sebep olabilir.
 

Dokumada çözgü ipliklerinin belirli kurallara göre çerçevelerdeki gücü gözlerinden ve tarak dişleri arasından geçirilmesi işlemine tahar denir. Tahar işleminin ilk aşaması gücü taharı, ikinci aşaması ise tarak taharıdır. Bu iki işlemin de bir plan sisteminde gösterilmesi gerekmektedir. Tahar planı, gücü ve tarak planını temsil etmektedir.

 

 Tahar planı, bir örgünün en az kaç çerçeve ile dokunabileceğini ve hangi çözgünün hangi çerçevede yer alması gerektiğini gösterir. Desen kâğıdında örgünün üst ya da alt kısmında yer alır.

Tahar planı, dokunacak olan örgünün raporu esas alınarak çizilir. Tahar planı çiziminde temel kural örgü raporundaki aynı hareketi (aynı bağlantı şekli veya aynı çözgü ipliği hareketi ) yapan çözgülerin belirlenmesi ve bu çözgülerin aynı çerçeveye ait olduğunun belirtilmesidir.

Desen kağıdında dolu ile gösterilen noktalar çözgü ipliğinin atkı ipliğinin üstünden geçtiğini gösterir. Boş olan noktalar ise atkı ipliğinin çözgü ipliğinin altından geçtiğini gösterir.

Örneğin; bez ayağı örgüsünü oluşturan tek numaralı (1.3.5.7...) çözgü iplikleri aynı hareketi yani aynı bağlantıyı yaptığından aynı çerçevede toplanır. Benzer şekilde, çift numaralı (2.4.6.8...) çözgü iplikleri de grup oluşturarak ayrı bir çerçevede yer alır. Bez ayağı örgü raporunda iki farklı çözgü hareketi bulunduğundan bez ayağı örgüsü en az iki çerçeve ile dokunur. Bu durumda herhangi bir örgünün dokunabilmesi için gereken çerçeve sayısı, örgü raporunda bulunan farklı çözgü hareketi sayısına eşittir. Tahar planının desen kâğıdına çiziminde genellikle kullanılan yöntem tahar planının örgü raporunun üzerinde yer alması ve her çerçeve için bir satır ayrılmasıdır. Çözgü ipliğini gösteren sütun ile ait olduğu çerçeveyi gösteren satırın kesiştiği noktadaki karenin içi doldurulur. Aynı işlem örgü raporundaki tüm çözgüler için tekrarlanarak tahar planı çizilir.

Tahar planı çizilirken çerçevelerin numaralandırılması, dokuma makinesi veya numune dokuma tezgâhının çalıma şekline göre iki şekilde yapılabilir.

Numaralandırma kumaşa en uzak çerçeveden başlayarak numaralandırma yapıldığında desen kâğıdında, yukarıdan aşağı doğru her satır bir çerçeveyi temsil eder. Çözgü ipliğini gösteren sütun ile ait olduğu çerçeveyi gösteren satırın kesiştiği noktadaki karenin içi doldurulur.

 

Numaralandırma kumaşa en yakın çerçeveden başlayarak yapıldığında desen kâğıdında, aşağıdan yukarıya doğru her satır bir çerçeveyi temsil eder. Çözgü ipliğini gösteren sütun ile ait olduğu çerçeveyi gösteren satırın kesiştiği noktadaki karenin içi doldurulur.  

 

Tahar planı oluştururken aynı hareketi yapan çözgüler, çerçeve üzerine düşen yükü azaltmak amacıyla birden fazla çerçeveye dağıtılabilir. Yani toplam çözgü ipliği sayısını kullanılacak çerçeve sayısına bölersek her çerçeve başına düşen çözgü ipliğini tespit etmiş oluruz. Bu durumda çerçeve sayısı örgü raporundaki çözgü sayısının katları olmalıdır. Örneğin, bez ayağı örgüsü 2 çerçeve yerine 4, 6, 8... çerçeve ile dokunabilir. Ancak farklı bağlantı şekilleri olan çözgüler, kesinlikle aynı çerçevede toplanamaz.

 

TARAK PLANI

Tarak planı tarağın bir diş boşluğundan kaç adet çözgü ipliği geçmesi gerektiğini gösterir. Tarak planı desen kâğıdında tahar planı ile örgü raporu arasıda yer alır. Tarak planında desen kâğıdının yatay yönde her bir karesi bir çözgü telini gösterir. Bir diş boşluğundan geçecek tel sayısı kadar karenin yan yana içi doldurulur. Yan yana bulunan iki diş boşluğunun karışmaması için örgü raporu boyunca iki satır kullanılır.

 

Yan yana iki adet kare dolu olarak gösterilmiş ise ; tarak taharı yapılırken her diş boşluğundan ikişer çözgü teli alınacaktır.

Bir adet kare dolu olarak gösterilmiş ise ; tarak taharı yapılırken her diş boşluğundan birer çözgü teli alınması gerektiği belirtilmiştir.

Diş boşluğundan geçen tel sayısı genellikle örgü raporuna uygun olarak seçilir. Örneğin; bez ayağı örgülü bir kumaş için bu sayı 2, 1/2 dimi örgülü kumaş için 3,5li saten örgülü kuma için 5 olabilir. Bunun dışında çözgü sıklığı, istenen kumaş özelliği ve kullanılan iplik özelliği gibi kriterler de göz önünde bulundurulur. Örneğin; tül ve organze türü kumaşlarda çözgü ipliklerinin düzgün dağılımı için her diş boşluğundan birer tel alınması uygun olmaktadır. Bazı kumaşlarda, kumaş enince farklı bölgelerde farklı çözgü sıklıkları oluşturmak gerekebilir. Bu durumda tarak taharı yapılırken diş boşluğundan geçen tel sayısı sabit kalmaz. Sürekli tekrar eden bir tarak raporu oluşturacak şekilde değişiklik gösterir.