Kimyasal Elyaflar (7)

Çarşamba, 11 Mart 2020 12:54

polyester-Viskon-Elastan lifleri

Yazan

POLYESTER LİFLERİ

Kimyasal adı polietilentereftalat olan PET polyesteri, Whinfield ve Dickson tarafından keşfedilmiş olup, ilk defa 1941 yılında ticari ölçüde üretilmiştir.

İkinci dünya savaşından sonra İngiltere’de ICI firması, ABD de DuPont firması polyester lif üretim yöntemlerini geliştirmişlerdir. Özellikle 1950’den bu yana polyester lif üretiminde hızlı bir artış görülmektedir. Sentetik lifler arasında en çok üretilen ve tüketilen liflerden biridir.

Petrol sanayinin bir türevi olan polietilenteraftalat’tan, eriyikten lif çekme işlemiyle üretilen polyester elyafı çok önemli bir elyaftır. İlk önceleri pek kullanılmasa da zamanla kullanımı yaygınlaşmış ve daha da geliştirilmiştir. Elyafın kendisi geliştirildiği gibi, elyafın boyanabilirlik özellikleri ve yeni boyama metotları da geliştirilmiştir. Polyester lifleri tek başına kullanıldığı gibi doğal ve yapay diğer liflerle de kullanılabilirler.

Polyester elyaf esas olarak; hidrofobluğu, yüksek mukavemeti, buruşmazlığı ile karakterize edilebilir. Bu özellikleri ile polyester elyaf; pamuk, viskon, yün karışımlarında kullanım özelliklerini geliştirici rol oynayan önemli bir elyaf çeşididir.

Polyester elyafının fiziksel özellikleri

  • Boyuna kesiti pürüzsüz ve yeknesak, çubuğa benzeyen bir görünüme sahiptir. Enine kesiti çoğunlukla yuvarlaktı Düze formuna göre değişik kesitleri de vardır.
  • İlk üretildiklerinde sonsuz filament halindedirler. Daha sonra ştapel olarak istenilen boylarda kesilebilirler.
  • Sentetik elyafta incelik üretim sırasında istenilen şekilde olur.
  • Özgül ağırlığı 1,38 g/cm³
  • Üretimde beyaz renklidir. İstenirse, elyaf çekme çözeltisine pigment renklendiriciler ilave edilerek renkli elyaf elde edilir.
  • Üretimde parlaktı İstenirse, lif çekme eriyiğine matlaştırıcı maddeler ilave edilerek veya daha sonra çeşitli işlemler ile matlaştırılabilir.
  • Normal şartlarda nem oranı %0.4’tür, hidrofob olarak nitelenebilir.
  • İyi ve mükemmel derecede mukavemete sahiptir. Üretim şekline monomerlerine ve germe miktarına göre kuru mukavemeti 4.5-8 gr/denye arasında değiş Kuru mukavemet ve yaş mukavemet arasında pek fark yoktur.
  • Uzama elastikiyeti orta veya iyi derecededir. Esneme yetenekleri normal filament elyafta %15-30, ştapel elyafta %30-50 arasındadı
  • Rezilyens(yaylanma) mükemmeldir. Buruşmadan iyi bir şekilde eski haline döner.
  • 130ºC’de yumuşaya baş 255-260ºC’de erimeye başlar.
  • Nem emiciliğinin düşük olması sebebiyle statik elektriklenme problemi vardı
  • Pilling tekstil elyafları içerisinde en fazla polyester lifinde görülür.

Polyester liflerinin kimyasal özellikleri

  • Seyreltik asitlere hem sıcakta hemde soğukta, konsantre asitlere (sülfürük asit hariç) yalnız soğukta dayanıklıdır.
  • Alkalilere soğukta dayanıklıdır. Orta ve yüksek sıcaklıklarda zayıf alkalilerden bile etkilenir.
  • Yükseltgen ve indirgen maddelere karşı yüksek bir dayanıma sahiptir.
  • Organik çözgenlere karşı çoğunluğuna dayanıklıdır. Kuru temizlemede kullanılan benzen, trikloretilen, karbontetraklorür, perkloretilen gibi çözgenlerde zarar görmez. Odiklorbenzen, dimetiltereftalat gibi bazı çözgenlerde belirli koşullarda tamamen çözünürler. Organik çözgenlerin şişirici etkisi poliesterin boyanmasını kolaylaştırır.
  • Işık ve atmosfer koşullarına yüksek dayanım gösterir.

Tekstilde gerek kesiksiz filament gerekse kesikli elyaf olarak polyester birçok kullanım alanına sahiptir. Hazır giyim eşyası, ev döşemesi ve endüstriyel alanlarda kullanılan birçok mamulün yapımında önemli bir elyaftır. Açık hava koşullarına dayanıklılık gerektiren alanlarda da önem taşır. Hafif, ince kumaşlarda kalıcı ütü isteyen giysilerde, örgü dış giyimde ve takım elbiselik gibi ağır kumaşlar için yün ile karıştırılarak kullanılır. Genellikle %35 veya %50 oranda, pamukla karıştırılarak yağmurluk ve gömleklik kumaşlar yapımında kullanılır. Dikiş iplikleri için kesikli ve filament halde ve nüveli ipliklerin üretiminde önemli kullanımı vardır. Elyaf hafif yüklemelerle kolayca uzamadığından, çorapçılıkta polyester elyaf kullanılmaz

VİSKON LİFLERİ

Viskon ilk rejenere elyaf olup sentetik olmayan bir yapay elyaftır. Hammaddesi, doğal selüloz içerikli olan ağaç hamurundan üretilmektedir. Bu nedenle polyester, naylon gibi sentetik ve termoplastik liflere nazaran pamuk, keten gibi doğal selülozik elyaflara daha çok benzemektedir.

Viskon ucuz ve yenilenebilir kaynak olan ağaç hamurunda elde edilmesine rağmen üretimi esnasında yoğun su ve enerji tüketimine neden olmakta ve ayrıca hava ve su kirliliğine katkıda bulunmaktadır. Kolay bulunan hammaddeyle birlikte üretim ve proseslerdeki modernizasyonla viskon pazarda rekabet gücünü artırmaktadır.

1664’ün sonlarına kadar İngiliz natüralist Robert Hooke yapay liflerin ipek böceğinin ipeği ürettiği gibi üretileceğini tasarlıyordu. İlerleyen zamanlarda birçok bilim adamı bu konuda çalışmalar yapmış, ancak başarılı olamamıştır.

1855’de Fransız George Audemars, dut ağacı kabuğunun hamuru ve sakızımsı kauçuktan oluşan yoğun solüsyonun içerisine iğne batırmak suretiyle iplik elde etmiştir. Ancak bu şekildeki bir üretim için, oldukça yüksek dikkat gerekmekteydi. Dolayısıyla üretim yavaş gerçekleşmekte ve maliyetin yüksek olmasına neden olmaktadır. Kısa bir süre sonra 1891’de İngiliz kimyacı Charle Frederick Cross ve iş arkadaşları Edward John Beyan ve Clayton Beadle viskon üretim prosesini bulmuşlardır. Viskoz liflerinin hammaddesi selülozdur. Üretim için % 92-98 civarında selüloz içeren pamuk linteri ve odun selülozu kullanılır. Bu maddeler temizlendikten sonra kostik soda ile muamele edilerek alkali selüloz oluşturulur.

Alkali selülozdaki fazla kostiğin uzaklaştırılması için mekanik presten geçer, ardından etki yüzeyini artırmak için mekanik parçalayıcıdan geçer. Daha sonra karbon disülfit ile işleme sokularak selüloz ksantata dönüştürülür ve seyreltik kostik soda çözeltisiyle çözülür.

Elde edilen ham viskoz çözeltisi olgunlaştırma işlemine tabi tutulduktan sonra asit koagüle banyolarında çekilir ve böylece viskoz fılamentleri meydana gelir. Viskoz lif çekimi sırasında hava kabarcıklarının düzeden çıkan elyafın kopmasına neden olmaması için lif çekimi vakumlu ortamda yapılır. Ayrıca filamentin yapışmasını önlemek için koagülasyon banyosundan geçirilir. Lifler üretildikten sonra germe işleminden geçer. Germe işlemi iki basamakta olmaktadır.

Birinci basamakta %10’luk bir gerilim uygulanırken, ikinci bölgede %50’lık bir gerilim uygulanır. Daha sonra tow haline getirilen lifler ikinci bir banyodan geçerek kesmeye giderler. Burada yapılan kesimden sonra viskon lifi üretilmiş olur. Rejenere selüloz elyafından filament halde elde edilen ipliklere floş (rayon),ştapel haldeki elyaftan elde edilen ipliklere de viskon iplikler denir. Filament haldeki ipliklerde (floş) görünüm, tuşe ve parlaklık gibi özellikler ipeğe benzer, yumuşak ve dökümlüdürler, statik elektriklenme ve piling açısından sorun yaratmazlar. Ştapel haldeki elyaflardan yapılan iplikler (viskon) ise büyük oranda pamuğa benzer nemçeker özellik gösterir. Sağlamlığı filament iplikten daha azdır. Bunun dışında özellikle birbirine benzer çeşitli bitim işlemleriyle özellikleri daha da iyileştirilebilir.

Viskon liflerinin fiziksel özellikleri şu şekildedir,

  • Lif uzunluğu boyunca uzanan pek çok kanallara sahiptir ve bunlar kesitin bir özelliği olan çentiklere karşılık gelir.
  • Viskon elyafının inceliği denye ile ifade edilir. Viskon elyafı genel olarak 1.5-2.5 ve 3.75 denye olarak üretilmektedir.
  • Özgül ağırlığı 1,15g/cm³.
  • Yaş mukavemeti; l.2-1.7 gr/denye, kuru mukavemeti; 2.3-3.0 gr/denye’dir.
  • Viskon elyafına uygulanan kuvvetin elastik sınır içerisinde olması durumunda; kuru olarak % 10-23, yaş olarak % 16-33 uzadığı tespit edilmiş
  • Viskon elyafı yapı itibariyle nem absorbsiyonu yüksektir. Elyaf havadan önemli miktar nem alı Ticari olarak viskonun rutubet değeri % 13’tür.
  • Viskonun kendilerine has parlak bir görünümü mevcuttur. Işık, lifin üzerine düştüğü sırada bir miktar absorbe edilmektedir. Yansıtılan ışık ise beyaz renktedir. Işığın çoğu, filament veya kesikli liflerin pürüzsüz ve düzenli yüzeylerinden yansıtılmaktadı Böylece göz kamaştıran ve ışıltılı bir parlaklık elde edilmektedir. Bu yüzden bir matlaştırıcı madde, lif çekim çözeltisine ilave edilebilmektedir.
  • 115ºC’ye kadar ısıya dayanır daha sonra önce sararır ve beyazımsı kül bırakarak yanar.
  • Işığın tesiri önemli ölçüdedir. Viskonun nem miktarı, ışığın etkisini arttırır ve mukavemetinin değeri azalı
  • Viskon kurutmaya maruz kalırsa mukavemeti azalır ve renkte solma oluş

Viskon liflerinin kimyasal özellikleri ise şu şekildedir;

  • Seyreltik asitler belli bir sıcaklıktan sonra, saf asitler ise soğukta etkiler.
  • Alkalilerin konsantrasyonu ve sıcaklıkla doğru orantılı olarak aynenpamukta olduğu gibi dayanıklıdır.

Filament veya ştapel haldeki floş-viskon iplikler dokuma ve örme kumaşlarda çok geniş bir kullanıma sahiptir. İnce dökümlü ve fantezi kumaşlar elde edilebilir, iplik özelliklerinin çoğunu aynı şekilde gösterirler. Viskon kumaşlar boya baskı gibi işlemlere de elverişlidirler.

Viskon elyafı çok geniş kullanıma sahiptirler. Elbise, ceket, mayo gibi hazır giyimin ürünlerinde, ev tekstilinde (yatak örtüsü, çarşaf, perde, masa örtüsü gibi), endüstriyel ürünlerde, tıbbi ürünlerde kullanılmaktadır. Özellikle şık ve dökümlü fantazi kıyafetlerin yapımında kullanımları yaygındır. Ayrıca üst giyimde astar olarak da kullanılır.

 

ELASTAN LİFLERİ

Yüksek uzama kabiliyetine sahip lif çeşitleri elastomer lifleri olarak tanımlanabilir. Elastomer lifleri kimyasal yapılarından dolayı kopmadan çok yüksek uzama gösterebilen ve kopma noktasına kadarki uzamalarda tamamen ve çabuk eski haline dönebilen liflerdir.

Uluslararası sözleşmelere göre “Elastan Lif” olarak adlandırılan poliüretanelastomer elyafın sadece esnekliği yüksek olmayıp, aynı zamanda yırtılma direnci de çok yüksektir. Bu nedenle pek çok alanda kullanım kolaylığı sağlamaktadır.

Poliüretan esaslı elastomerik lif sentezinin esası, 1937 yılında Otto Bayer, H.Rinke ve arkadaşları tarafından geliştirilen diizosiyanat-poliadisyon prosesine dayanmaktadır.

Endüstriyel anlamda ilk poliüretan esaslı elastomerik lif üretimi, J.C.Shvers ve arkadaşları tarafından DuPont firması araştırma bölümlerinde kuru çekim prosesiyle gerçekleştirilmiştir. DuPont firması bu geliştirdiği poliüretan esaslı multi filament yapıdaki elastomerik elyafı Lycra adı altında 1962 yılından beri üretmeye devam etmektedir. Amerikan Federal Ticaret Komisyonu’nun yaptığı tanımlamaya göre yapısında en az %85 oranında bölümlenmiş poliüretan bulunan sentetik polimerizasyon zincirlerine “Spandex” adı verilmektedir.

Poliüretan grubu liflerinin yaygın kullanımlarından ötürü özellikle Amerika ve Kanada’da “Spandex” elastomerik liflerin genel adı olarak kullanılmaktadır.

Avrupa’da ise poliüretan esaslı elastomerik liflerin genel adı olarak “Elastan” adıyla kullanıldığı görülmektedir.

Elastan lifi, mono ya da multi filament halinde sonsuz uzunlukta üretilir. İstenirse kullanım yerine göre kesikli (stapel) hale getirilebilir. Bugün endüstride 11- 2600 dtex arasında değişen incelikte elastan bulmak mümkündür.

Elastan liflerinin fiziksel özellikleri şu şekildedir;

                                            

  • Enine kesitleri, üretim yöntemlerine göre farklılıklar gösterir. Yuvarlak,oval, dörtgen ve bunlara benzer şekillerde olabilir. Genellikle yuvarlaktı
  • Yoğunluğu elastanın tipine ve üretim yöntemine bağlı olarak 1,15-1,95 g/cm3 arasında değiş
  • Elastan lifi renk olarak, şeffaf, mat ve parlak olarak üretilmektedir.
  • Bu liflerin en belirgin özelliği olan kopma uzaması değeri % 400-800 arasında değiş Elyafın azami esneme limitleri ve bundan doğan maksimum kopma kuvveti bitmiş ürünün fonksiyonelliğinde önemli rol oynamaktadır.
  • Diğer sentetik elyaflara nazaran daha dayanıksızdı Mukavemetleri 0,5- 1,5 g/denye arasında değişir. Yaş sağlamlığı çok az düşme gösterir.
  • Nem alma özelliği hidrofobik elyaf olduğu için çok düşüktür. %65 nispi nem ve 20º C de %1 civarı nem alı Sudan pek etkilenmez.
  • Tiplerine bağlı olarak sıcaklığa karşı dirençleri değiş 150º C de sertleşme görülür. 150-200º C arasında yumuşar ve 230-290º C arasında erir. Ütüleme sıcaklığı 150º C’yi geçmemelidir. Yüksek sıcaklıklar elyafın bozulmasına neden olur.
  • Eriyerek yanar. Kimyasal koku verir. İssiz yanar.
  • Statik elektriklenme ortadı Kuru ortamda statik elektriklenme oluşabilir.
  • Güneş ışığı elyafın sararmasına ve zarar görmesine neden olur.

Belirli kimyasal maddeler elastan kumaşlara uygulandığında kumaştaki elastan liflerine zarar verebilir. Elastanlar doymamış yağlardan ve greslerden etkilenir. Renkleri solar ve parçalanır. Yayılmış zaman aralıklarında depolanmaya ihtiyaç duyulan elastan içeren ham kumaş, renk atımından ve doymamış yağlardan çürümesini engellemek için bol su ile yıkanmalı ve durulanmalıdır. Klor açığa çıkaran kimyasal maddeler de elastik iplikleri solduracak ve bozacaktır. Yüzme havuzu suyunda bulunan klor, mayolardaki elastik iplikleri yavaş yavaş zayıflatır ve bir süre sonra kopmalarına neden olur. Uzun süre ultraviyole ışınlarına maruz kalması da aynı etkiyi yaratır. Hava kirliliği ve iklim farklılıklarından dolayı da elastan liflerinde solmalar, sararmalar artmakta ve dayanıklılığı azalmaktadır.

Sararma elastanın giyilme performansını etkilemese de, kumaş ya da gösterimdeki giysiler müşteri çekiciliğini kaybeder. Bunu engellemek için tüm depo giysileri ve kumaşlar, kimyasal tepkime vermeyen ve hava geçirmez paketlerde saklanmalıdır.

Elastan liflerin kimyasal özellikleri şöyledir;

  • Asitlerin çoğuna 24 saatten fazla maruz kalmadıkça dirençlidir. Soğukta sulu asitlerden pek zarar görmezler. Sıcakta hepsi az çok etkiler. Derişik mineral asitlerde hemen bozunur ve çözünür.
  • Bazların çoğuna karşı dirençlidir. Seyreltik soğukta yapılan işlemlerde fiziksel özelliklerinde bir düşme gösterir. Bu nedenle kostikli mamullerde fiziksel özellikler kontrol edilmelidir.
  • Kuru temizleme çözgenlerine karşı dirençlidir. Aromatik çözücülerde şiş
  • Sodyum hipoklorit gibi klorlu ağartma yapılmasından kaçınılmalıdı Klorlu yükseltgen maddeler renk değişmesine ve fiziksel özelliklerinde düşmeye neden olur.
  • Küf ve mantardan, güve ve böceklerden etkilenmez.
  • Dispers, asit, metal-kompleks, kromlama boyarmaddeleri ile boyanabilir. Bazı tipler zor boyanabilir.

Elastik iplik ve kumaşlar dünya tekstil endüstrisinde önemli bir yere sahiptir.2000’li yıllarda sergilenen moda eğilimleri arasında elastanın bulunmadığı tasarım hemen hemen yok gibidir. Elastan giysi konforu ve fonksiyonelliği sayesinde önemli bir yere sahiptir. Elastanın tekstillerde doğal kauçuğun ve lastiğin yerini alması ile yeni ürünlerin ortaya çıkması sağlanmıştır. Giysilerde rahatlık, kullanışlılık ve çok yönlülük gün geçtikçe daha çok aranan özellikler haline gelmiştir.

Elastanlı tekstil ürünlerinin klasik kullanım alanları arasında bay ve bayan çorapları, iç giyim, yüzme giysileri, korse ve diğer tıbbı tekstiller bulunmaktadır. Son yıllarda elastan iplik içeren tekstil ürünlerinin üretimi önceki yıllara göre büyük artışlar göstermiştir. Bunda, moda akımlarının yanında daha konforlu, kullanışlı, çok yönlü ve fonksiyonel tekstil ürünlerine olan talebin gittikçe artması da etkili olmuştur. Bu gelişmeler elastanlı tekstil mamullerinin klasik alanlar dışında serbest zaman giysileri, spor giyim ve jimnastik giysileri ile bay ve bayan giyime kadar daha geniş bir alanda kullanılmasını sağlamıştır. Çok fazla aktivite içeren ve yüksek kapsamlı vücut hareketleri gerektiren sporlar için kumaş esneme yeteneğinin % 35-50 olması gereklidir.

Elastan ipliklerinin çok yüksek elastikiyet ve rezilyans (yaylanma) yeteneği nedeniyle %3-5 gibi düşük kullanım oranlarında bile kumaşa ve giysiye elastikiyet dışında da önemli özellikler kazandırmaktadırlar. Bu özellikleri şu şekilde sıralamak mümkündür;

  • Giysilerde düzgün ve daha hoş bir görünüm,
  • Giyim konforunda artış,
  • Giysilere verilen şekil boyutlarının (beden ölçülerinin) daha kalıcı olması,
  • Yüksek derece elastikiyet, daha düşük buruşma eğilimi,
  • Yıka-giy etkisi olarak sı

Elastik tekstil ürünleri, pamuk, yün, polyester, poliamid, akrilik, vb. klasik tekstil liflerinin düşük oranda elastan ipliklerle dokunması veya örülmesiyle elde edilir.Aşağıda elastan ipliklerinin kullanım alanları ve elastan lif oranları görülmektedir. Yüzme giysileri ve tıbbı tekstiller dışında elastan ipliklerinin kumaştaki kullanım oranları genellikle %10’un altındadır.

 

pesvis1

 

Elastan iplikler moda faktörüne uyumludur ve modaya katkısı çok fazladır. Her alanda kullanılması sebebiyle bugün değişik tarz ve akımlara uyum sağlar. Sudan az etkilenir ve elastikiyetini uzun süre muhafaza eder. Günümüzde hemen her türlü giysi ve kıyafetin içeriğinde elastan yer almaktadır. Günlük kıyafetten deniz kıyafetlerine, spor kıyafetlerden klasik giyime, blue jeandan gece kıyafetlerine kadar her alanda elastan kullanılmaktadır.

PES/VIS/EA KARIŞIM İPLİĞİN GENEL ÖZELLİKLERİ

Yapısında özellikle elyaf ve filamentler bakımından birbirine benzemeyen bileşenler bulunan ipliklere karışım veya kombine iplik denir. İki veya daha fazla elyafı bir araya getirerek karışım elyaf elde edilir.

Karışım, iplik üretimi ve yüzey oluşumundan bu yana yapılagelmektedir. Karışım ile iyileştirilen kalite ve düşürülen maliyet yanında başka yararlar da kazanılır.

Eski iplikçiler “iplikçinin sanatı karışımda gizlidir” diyerek karışımın önemini güzel bir şekilde vurgulamışlardır.

Günümüzde lif karışımı bilim ve sanatın bileşimi olarak düşünülmektedir.

Lif karışımları çeşitli amaçlarla yapılır. Bu amaçları şu şekilde sıralayabiliriz;

 

  • Karışım ile olduğunca düzgün dağılımlı bir hammadde elde edilir.
  • Farklı kaynaklardan gelen hammaddelerin iplik içinde homojen dağılımı sonucu üretilen ürünün kalitesi yükseltilir.
  • Karışım komponentlerin iyi özelliklerinden yararlanılı (Örneğin; polyester/viskon karışımında polyesterin sağlamlık ve kolay bakım özelliklerinden yararlanılır.) Uygun lif inceliği ve uzunluğu seçilerek tuşe, parlaklık, renk vs.ye etki edebilir.
  • Pahalı olan doğal liflerin bir kısmı yerine oldukça ucuz olan yapay lifler kullanı (Örneğin; yün/viskon)
  • Kullanım yerine ve amacına uygun olarak düzgün satıhlı, parlak-mat lifler veya lif karışımları kullanılı
  • Farklı özelliklerdeki lif çeşitleri veya tipleri kullanılmakla modaya uygun efektler kazanılı
  • İpliklerde fizyolojik özellikleri daha iyi hale getirmek amacıyla karışım yapılı Örneğin; ısı izolasyonu, tutum özellikleri, nem çekme özellikleri gibi.
  • İplikte, iplikten elde edilen kumaşta ve son mamulde bakım özelliklerinin düzeltilmesi amacıyla karışım yapılı

Tekstil mamullerinde yıkama, kurutma, ütüleme gibi özellikler iyileştirilir

Karışımda yapay lif kullanımının yararları maliyeti düşürmenin yanısıra daha düşük yüzey ağırlığı, daha kolay bakım (yıka-giy) imkânı, belirli artikel grupları için çok kolay dikim imkânıdır. Yüksek hacimli liflerin üretime girmesiyle birlikte dokuma ve örme kumaşlarda hacimli, yumuşak, tüylü üst yüzey kazanılmıştır.

Doğal liflerle yapay liflerin karışımı daha çok, kullanım değerini yükseltmek amacıyla yapılmaktadır. Kullanım rahatlığı ve hijyen açısından karışımın özel bir yeri vardır.

Lif karışımlarını kullanmanın bir diğer nedeni de modadır. Üçlü veya daha çoklu karışımlarla çalışılarak özel efekt iplikleri yapılır. Karışım komponentleri farklı incelik ve renklerde seçilerek bu etki arttırılabilir.

Karışımdan amaç liflerin avantajlı özelliklerini bir araya getirmek, bir diğeri ile birleştirmek ve bir diğerinin istenmeyen özelliklerini kapatmak veya azaltmak olduğuna göre “optimal karışım” ortaya çıkmaktadır.

Değişik karışım oranlarında üretilen aynı tip ürünün özellikleri de değişiklik arzeder. Optimal karışımın hangi lifler arasında ve hangi oranlarda olduğunu saptayabilmek için her şeyden önce üründen beklenen özelliklerin bilinmesi gerekir.

Bilinenden yola çıkılarak uygun lif seçimi yapılır. Hangi lifin hangi liflerle ve ne kadar oranla karıştırılması gerektiği hesaplanır. Tüm bunlar yapıldıktan sonra üretimin teknolojik açıdan yapılabilirliği araştırılır.

Karışım ipliği bünyesinde liflerin yerleşim düzeninin bitmiş yüzey (mamul) karakterine büyük etkisi vardır. Merkezine yakın yerleşen liflerin subjektif etkisi bulunurken, dış yüzeye hakim görünüm ve tuşe gibi özellikleri ön plana geçer.

Yapılan çalışmalar göstermiştir ki, karışım ipliğinde kısa veya kaba lifler ipliğin dış yüzeyinde, uzun veya ince lifler merkezde, iplik çekirdeğinde yer alırlar.

Karışımlarda lif seçimindeki iki önemli kriter ekonomiklik ve kalitedir. Lif özelliklerinin yanısıra üretilen ipliğin özellikleri de karışımda etken olan faktördür. Özellikle tuşe, hacim, görünüm ve mukavemet kullanılan iplik üretim sistemi ile yakından ilgilidir.

 

Bir karışım ipliğinin oluşumunda en önemli eğirme kuralları şu şekildedir;

  • Elyaf inceliği ipliğin eğrilebilirlik sınırını İşe yarar bir iplik elde edebilmek için iplik kesitinde bulunan minimum lif sayısı söz konusudur. Bu durum özellikle rotor iplikçiliğinde büyük önem taşımaktadır. Eğirme sınırını yukarıya çekebilmek için sentetik kökenli daha ince mikronerli veya mikrofiber kullanmak gerekmektedir.
  • Değişik incelikte elyafın karıştırılmasında aynı değişik renklerde elyaf partileri karıştırıyormuş gibi, karışımın olabildiğince homojen olmasına dikkat etmek gerekir. Eğer bu yapılmayacak olursa veya komponentlerden birisi çok düşük ise komponentler karışma yerine ayrışacak, bu durum sadece hata ve düzgünsüzlüklere yol açmayacak, aynı zamanda iplikten beklenen spesifikasyonların tersine sonuçlar vermesine neden olacaktı
  • Elyaf karışımlarıyla ilgili diğer bir kriter ise mukavemet/elastikiyet eğrisi
  • İliş

Tekstilde yaygın olarak kullanılan karışımlar;

Polyester/pamuk, polyester/viskon, polyester/yün, yün/poliamid, yün/viskon şeklindedir.

Bu karışımlar içerisinde polyester/viskon karışımı rahatlık, kullanımı ve bakımı kolay olması nedeniyle tekstil endüstrisinde sıkça kullanılan bir karışımdır. Bu tip karışımda polyester liflerinin yüksek mukavemet özelliğinden yararlanılır. Yüksek kuru ve yaş mukavemetleri sayesinde yapıya iyi ve dayanıklı mekanik özellikler kazandırır. Ayrıca polyester iyi bir boyutsal stabilite sağlamaktadır. Polyesterin hidrofob elyaf olmasından kaynaklanan deride ıslaklık hissi kullanım açısından sorun olarak görülmekle birlikte kısa sürede ürünün kurumasını da sağlamaktadır.

Viskon lifleri polyesterin aksine yapısında %40-80 su bulundurabilir ve bu sayede nemi kontrol altında tutar. Deride kuruluk hissi uyandırır. Ayrıca viskonun yumuşaklığından, parlaklığından yararlanılır.

Cumartesi, 25 Mart 2017 16:33

Suni-Rejenere Lifler

Yazan

Yapımında başlangıç maddesi olarak doğal hammadde (selüloz veya protein) kullanılan, kimyasal işlemlerle esas molekül yapısı bozulmadan elde edilen liflere rejenere lif denir. Rejenere lifler, doğal polimerlerden kimyasal ve fiziksel işlemlerle yeniden şekillendirilerek bir lif çekim yöntemiyle filament hâlinde üretilirler. Doğal polimer maddenin kaynağına göre rejenere elyaf iki çeşittir: selüloz esaslı lifler ve protein esaslı lifler.

SELÜLOZ ESASLI SUNİ LİFLER

Rejenere elyafı oluşturan doğal polimer olarak selüloz alınmışsa rejenere selülozik elyaf adı verilir.

Rayon ve Floş: Filament hâldeki rejenere selüloz elyafına verilen isimdir. Doğal kaynaklı insan yapısı elyaf üretiminin en önemli temsilcisidir. Ülkemizde rayon üretimi yapan işletme çok az olduğundan, genelde ithal edilerek kullanılmaktadır. Selüloz kökenli rejenere elyaf çeşitleri şunlardır:

Viskoz lifleri,

Modal lifleri,

HWM (High Wet Modulus Rayonu),

Asetat lifleri,

Triasetat lifleri,

Nitrat rayonu,

Bakır rayonu.

Bunlardan nitrat ve bakır rayonunun günümüzde üretimi yoktur. Viskoz ve modifiye viskoz liflerinin üretimi önemlidir. Asetat ve triasetat liflerinin özellikleri, diğer rayon kökenliler gibi selüloz esaslı olmalarına rağmen, hidrofob (su itici) karakterli sentetik kimyasal liflere benzemektedir. Doğal selüloz kaynakları, linter ve ağaç selülozudur. En kaliteli rejenere selüloz lifi, linterden elde edilir.

Viskoz elyafı genellikle iki şekilde elde edilmektedir: Viskoz rayon (filament hâlde) ve Viskon (ştapel hâlde) elde edilir.Viskozüretimi için odundan ve linterden elde edilen selüloz hammaddesi kostik soda ve sodyum bisülfit ile işlem görerek yabancı maddelerden arındırılır. Selüloz hamuru kostik soda çözeltisi (NaOH) ile işlem görerek alkali selüloz hâline dönüşür. Alkali selüloza, ön olgunlaştırma işleminden sonra karbon sülfür (CS2) ilave edilerek selüloz ksantat elde edilir. Seyreltik sodyum hidroksit ilavesi ile de ham viskoz çözeltisine dönüştürülür. Filtreleme ve ard olgunlaştırma işleminden sonra viskoz çözeltisi asitli bir banyoya düzelerden fışkırtılarak yaş çekim yöntemiyle katı hâlde viskoz filamentleri elde edilir.

 

 

 01vizkoz

 

 

Katılaşan filamentler, germe - çekme, yıkama ve kurutma işlemlerinden sonra bobine sarılarak viskoz rayon iplik elde edilir. Filamentler tow (kablo) şeklinde bir araya getirilir. Kesme işlemi ile de ştapel (kesikli) hâle dönüştürülür. Yıkama ve kurutma işlemlerinden sonra balyalanır ve viskon elyafı elde edilir Balya hâlinde işletmelere sevk edilir. Viskon, kesikli rejenere selüloz elyaftır ve genel özellikleri bakımından pamuğabenzemektedir.

Viskoz Rayonu

Selüloz esaslı rejenere lifler içinde en önemlisi ve en çok kullanıma sahip olan liftir. Viskoz rayonu, kimyasal lif çekim yöntemlerinden yaş çekim metodu ile üretilmektedir.

 

02vizkoz

 

Viskoz Rayon Elyafının Fiziksel Yapı ve Özellikleri

Mikroskobik görünüş: Elyaf boyunca uzanan çizgiler vardır. Enine kesiti ise, girintili çıkıntılıdır.

Uzunluk: Genelde filament hâldedir. Kullanım yerine göre istenilen uzunlukta kesilerek viskon elyafı elde edilir.

İncelik: 50-900 denye incelikte iplik üretilebilir. Monofilament inceliği ise 1-1,5 denyedir.

Renk: Özel olarak matlaştırılmamış ise üretildiğinde şeffaftır.

Parlaklık: Üretildiklerinde parlaktırlar.

Mukavemet (kuru): Kuru dayanımları viskoz rayonda iyi, modalda mükemmeldir. Viskoz reyonunda mukavemet 2-3 gr/denye civarındadır.

Mukavemet (yaş): Yaş hâlde iken mukavemette % 30-50 arasında düşme olur.

Uzama Mukavemeti: Viskoz lifleri; kuru hâlde % 10-11, yaş hâlde % 25-35 uzarlar.

Rezilyans (yaylanma): Viskoz rayonu düşük, modal iyi yaylanma (rezilyans) yeteneğine sahiptir. Modalın tutum özellikleri, yüksek kaliteli pamuğa benzer.

Nem alma: % 10-16 arasında nem alımı ile doğal selülozik liflerden daha hidrofildir. Daha çok su absorbladıkları için daha yavaş kururlar. Yavaş kurumaları, nemi çabuk emmelerinden de kaynaklanır.

Sıcaklık: Güneş ışığından etkilenerek, dayanım kaybına uğrarlar. 150 °C'nin üzerinde güç kaybederler. Ütüleme sıcaklığı, 135 °C civarındadır.

Alev alma: Kolay ve çabuk yanarlar.

Statik Elektriklenme: Çok fazla statik elektriklenme problemleri yoktur.

Pilling (boncuklanma): Daha çok filament hâlinde kullanımı nedeniyle pilling problemleri yoktur.

Yoğunluk: 1,50 g/cm³ yoğunluk ile pamuktan daha düşük, poliesterden daha yüksek yoğunluğa sahiptir.

Kullanım Özellikleri: Termoplastik özellik taşımaz. Viskoz rayonu iyi bir iletkendir. Viskoz rayon genel özellikleri bakımından, pamuğa benzese de lif üretiminde, boyama ve baskıda, apre işlemlerinde uygulanan çeşitli etkilere karşı reaksiyonu farklıdır. Pamuk gibi ana yapısı %100 selüloz olmasına rağmen, polimerleşme derecesi daha düşük olduğundan; pamuktan daha mukavemetsiz, kimyevi maddelere karşı da direnci daha azdır.

Viskoz Rayon Elyafının Kimyasal Özellikleri

Asitler: Kuvvetli asitlerden etkilenir. Sıcak sulandırılmış mineral asitler veya soğuk yoğun asitler lifi çürütür.

Bazlar (alkaliler): Bazlara karşı dayanımları pamuktan düşüktür. Kuvvetli bazlar dayanıklılığını azaltır.

Organik Çözücüler: Kuru temizleme yapılabilir. Kuru temizleme maddelerine karşı dirençlidir.

Ağartma maddeleri: Yükseltgen ve indirgen maddelerin etkisi pamukta olduğu gibidir. Sodyum hipoklorit (NaCIO) gibi beyazlatıcılardan etkilenir.

Küf ve mantar: Temiz ve kuruyken, küf ve mantar oluşumuna dayanıklıdır. Dayanımları nem ve sıcaklığa bağlıdır. Uygun ortamda küf ve mantarlar renk atmalarına neden olur.

Güveler, böcekler: Güvelere dayanıklıdır. Bazı böcekler dolaylı olarak zarar verebilirler.

Işık, atmosfer koşulları: Güneş ışığında uzun süre kaldığında zarar görür.

Su: Şişme olur. Islakken dayanımı azalır.

Boyama: Boyarmaddelere karşı olan afinitesi (ilgisi) pamuklu materyale göre daha fazladır. Direkt, küp ve kükürt boyarmaddeler ile boyanabilir.

Doğal ipeğe benzediğinden, dayanıklılık gerektirmeyen yerlerde, doğal ipeğin yerine kullanılır. Elbise, gömlek, gecelik, ceket, perde ve döşemelik kumaş, tıbbi mamul, non-woven kumaş üretimi, ev tekstil ürünleri vb. alanlarda kullanılır.

Asetat Rayonu

Asetat ipeği üretimi için odun hamuru, pamuk linteri veya artıkları kullanılır. Önceden sodyum hidroksit (NaOH) ile işlem görmüş olan odun hamuru, sodyum hipoklorit (NaClO) ile ağartılır ve kurutulur. Kurutulmuş selüloz hammaddesi, asetik asit içinde ıslatılarak şişirilir. Bu işlemde katalizör olarak sülfirik asitle beraber çinko klororür de kullanılır. Şişirilmiş selüloza asetik anhidrit eklenerek asetilasyon işlemi gerçekleştirilir. Bu reaksiyon ekzotermik (dışarıya ısı verebilen) olduğundan karışımın dıştan soğutulması gereklidir. 6-7 saat sonra selüloz tamamen esterleşerek jelâtinimsi viskoz hâle dönüşür. Viskoz sıvı % 50’lik asetik asit çözeltisi ilave edilerek kısmen hidroliz edilir. Hidrolizin derecesi karışımdaki asetat yüzdesi ile belirlenir. Asetat yüzdesi % 45-55 olduğunda primer asetat, sekonder asetat veya 2,5 asetat denilen bileşiğe dönüşmüş olur. Elde edilen sekonder asetat su dolu kaba dökülür ve beyaz toz hâlinde çöktürülür. Süzülür, yıkanır ve kurutulur. Sekonder asetat ağırlığının üç katı kadar asetonda çözündürülür. Çözünme 24 saat sonra tamamlanarak lif çekimine hazır duruma gelinir. Önce çözelti vakumlanır ve süzülür. Kuru çekim yöntemi ile filament haline getirilir. Sekonder asetat ayrıca 230 °C'a kadar ısıtılıp eritilerek yumuşak çekim yöntemi ile de filament halinde çekilebilir. Dayanıklılığını artırmak için germe çekme işlemi uygulanır ve bobine sarılır. Asetat ve triasetat elyafının fiziksel yapı ve özellikleri aşağıda verilmiştir.

Asetat Elyafının Kimyasal Özellikleri

Asitler: Leke çıkarmada kullanılan asitlerden etkilenmezler. Konsantre kuvvetli asitler ise elyafı parçalar.

Bazlar (alkaliler): Sulu bazların etkisi azdır. Kuvvetli bazlardan zarar görürler.

Organik çözücüler: Etkilenmez.

Ağartma maddeleri: Tavsiye edilen konsantrasyonlarda ağartıcılarının kullanımından zarar görmezler.

Küf ve mantar: Küfe karşı dirençlidirler, fakat renkte solmalara neden olabilir.

Güveler ve böceklere dayanımı: Dayanıklıdırlar.

Işık, atmosfer koşulları: Asetat güneş ışığında uzun süre kaldığında zayıflar.

Su: Şişme ve çekme gibi etkiler olmaz. Çok çabuk kurur. Islakken dayanımı azalır.

Boyama: Asetat, pamuk boyar maddeleri ve özel boyalar ile boyanır.

Asetat Elyafının Fiziksel Yapı Ve Özellikleri

Mikroskobik görünüş: Asetat pürüzsüz bir yüzeye sahiptir ve boyuna çizgileri viskoz rayonundan daha seyrektir. Loblu bir kesiti vardır.

Uzunluk: Genelde sınırsız uzunlukta filament hâlindedir. Kullanım yerine göre istenilen uzunlukta ştapel hâlinde kesilebilir.

İncelik: Genelde ince numaralarda 1-5 dtex arasında üretilebilirler.

Renk: Özel olarak matlaştırılmamış ise şeffaf renktedir.

Parlaklık: Üretildiklerinde parlak olup kullanım amacına göre matlaştırılabilirler. Parlak, yarı parlak veya mat hâlde olabilirler.

Mukavemet (kuru): Çok iyi değildir. Mukavemetleri 1,5-2 g/denye arasındadır.

Mukavemet (yaş): Yaşken mukavemet düşer. Islandığında mukavemette % 30 oranında düşme olur.

Uzama elastikiyeti: Çok yüksek değildir. % 25-30 arasında bozulmadan uzayabilirler.

Rezilyans (yaylanma): Orta derecededir, yaylanma özelliği naylondan düşük, pamuktan yüksektir.

Nem alma: % 6,5 nem alabilir.

Sıcaklık: Ütüleme sıcaklığı, 160 °C, Düşük ısılarda ütülenmelidir.

Alev alma: Her ikisi de yavaş yanar. Geriye kalan eriyik ciddi yanmalara sebep olabilir.

Statik elektriklenme: Statik elektriklenme derecesi düşüktür.

Pilling özelliği (boncuklanma): Boncuklanmaz.

Yoğunluk: 1,31g/cm³, civarındadır. Pamuk ve poliesterden düşük akrilik ve naylondan yüksek yoğunluk değerine sahiptirler.

Filament iplik hâlinde üretilenler; abiye giysilik kumaşlar, pelüş, kadife, dekorasyon amaçlı kumaşlar, kürk ve manto için astarlık kumaşların üretiminde kullanılır. Kesikli liflerden eğrilen iplikleri; fantazi iplikler, elbiselik kumaşlar, takım elbiselik ve mantoluk kumaşların üretiminde kullanılır.

PROTEİN ESASLI LİFLER

Doğal polimerlerden olan protein maddeleri de değiştirilerek veya rejenere edilerek farklı elyaf türleri elde edilmektedir. Bunlar için başlangıç maddesi olarak genellikle hayvansal (süt kazeini) veya bitkisel protein (mısır proteini, soya fasulyesi ve yer fıstığı proteinleri) kullanılmaktadır. Genel üretim metodu olarak; protein içeren başlangıç hammaddesinden protein ayrıştırılır, uygun bir çözücüde çözündürülür, yaş veya kuru çekim yöntemlerine göre filament elde edilir. Rejenere protein elyafa genel olarak azlon da denilmektedir. Azlon üretiminde hammadde olarak bitkisel ve hayvansal kökenli protein kullanılabilir. Rejenere protein elyafın tutum ve sıcak tutma özellikleri çok iyi olmasına rağmen, fiziksel özellikleri birçok elyafa göre iyi değildir. Yün ve selüloz lifleri ile karıştırılarak pelüş yapımında kullanılır. Yaş mukavemetinin çok düşük olması, tek başına kullanımına olanak vermemektedir. Ana yapısı protein olduğundan; yumuşaklık, sıcak tutma, kırışıklıkların giderilmesi ve boyar maddelere afiniteleri gibi özellikleri yüne benzer.

Bitkisel Protein Esaslı Suni Lifler
Zein (Vicara)

Zein, mısırda bulunan bitkisel proteine verilen isimdir. Mısırdan zeinin ayrılması sudkostik (NaOH) ve asitle çöktürme ile sağlanır. Zein, mısırdan nişasta elde edilmesi sırasında % 70’lik izopropil alkol ilavesi ile ayrıştırılır. Alkol buharlaştırılır ve açık sarı renkte toz hâlinde zein elde edilir. Ardından bu madde sudkostik çözeltisinde çözünür. Çözelti daha sonra filtrelenir, havası alınır ve 24 saat olgunlaştırma için bekletilir. İçinde sülfürik asit, asetik asit ve çinko sülfat bulunan asidik kogülasyon banyosunda düzelerden pompalanarak yaş çekim yöntemi ile filament hâline getirilir. Kesikli lif yapılacaksa filamentler yıkanır, kıvrım verilir, kurutulur ve kesilerek ştapel hâle getirildikten sonra balyalanır.

Zein Elyafın Fiziksel Yapı ve Özellikleri

Mikroskobik görünüş: Enine kesiti dairesel, uzunluğuna görünüşü ise içi boş cam çubuğa benzemektedir.

Uzunluk: Genelde filament hâldedir. Birlikte kullanılacağı lif uzunluğuna göre istenilen uzunlukta kesilebilir.

İncelik: İnceliği 2-15 denye arasındadır.

Renk: Hafif sarımsı renklidir.

Parlaklık: Üretildiklerinde parlaktırlar. Daha sonra kullanıma göre matlaştırılabilirler.

Mukavemet (kuru): 1,2 g/denye,

Mukavemet (yaş ): Yaş mukavemeti daha düşüktür. 0,60 g/denye,

Uzama elastikiyeti: % 5 gerildiğinde esnekliği % 100'dür.

Nem alma: Ticari nemi % 13 olup, % 40'a kadar nem çekebilir.

Sıcaklık: Kolayca ütülenebilir.

Yoğunluk: 1,25 cm³’tür.

Zein Elyafının Kimyasal Özellikleri

Asitler: Asitlere karşı yün ve ipekten daha dayanıklıdır.

Bazlar (alkaliler): Alkalilere karşı hassastırlar. Kuvvetli alkalilerin sıcak çözeltisi life zarar verir.

Ağartma maddeleri: Tavsiye edilen konsantrasyonlarda ağartıcılarının kullanımında tehlike yoktur.

Küf ve mantar: Küf ve mantarlardan etkilenmezler.

Güveler, böcekler: Dayanıklıdırlar.

Işık, atmosfer koşulları: Güneş ışığında uzun süre kalırsa zarar görebilir.

Su: Kolay yıkanır.

Yün, pamuk, viskon ve naylonla karıştırılarak kadın ve erkek giysi kumaşları, triko ve jarse kumaşlarla bebek giysileri, battaniye üretiminde kullanılır.

Soya Fasulyesi (Silkool)

 

01soya

 

Soya fasulyesi, % 35 oranında bitkisel proteine sahiptir. Yağı alınmış soya fasulyesi % 0,1'lik sodyum sülfat çözeltisi ile işleme alınır. Elde edilen protein çözeltisi pH=4,5 oluncaya kadar sülfirik asit ile muamele edilir. Bu değerde soya fasulyesi proteini çöker. Çözelti (protein maddesi) seyreltik sodyum hidroksitte (NaOH) çözündürülür. Elde edilen çözelti filtrelenip havası alındıktan sonra düzeden geçirilerek asidik banyo ile filament hâline getirilir.

 

 

02soya

 

Soya fasulyesi elyafı doğal kıvrımlı bir yapıya sahiptir. Rengi beyazdan açık ten rengine kadar değişen yarı parlak ve yumuşak bir elyaftır. Yaş mukavemeti düşüktür. Kuru halde % 40, ıslakken % 60 uzayabilir. % 10-13 oranında nem çeker. Kimyasal özellikler bakımından diğer protein liflerine benzer. Diğer kimyasal veya doğal liflerle karıştırılarak kullanılır. Üst giyim amaçlı kumaşların üretiminde kullanılmaktadır.

Yer Fıstığı Lifleri (Ardil)

Yer fıstığı, protein ve yağ bakımından oldukça zengin bir bitkisel üründür. Yağı alınmış yer fıstığı proteini, seyreltik sodyum hidroksit (NaOH) çözeltisi ile ayrıştırılır. Protein çözeltisi olgunlaştırılıp süzülür ve havası alınır. Düzelerden asidik banyoya gönderilerek yaş çekim yöntemi ile filament elde edilir. Ardil elyafı esnek ve kıvrımlı bir yapıya sahiptir. Krem renginde ve yumuşak tutumludur. Esneklik ve kıvrımlı yapısından dolayıyün elyafına benzer. Yün, pamuk ve rayon ile karıştırılarak kullanılabilir. Genellikle, üst giyim amaçlı kumaşların üretiminde kullanılmaktadır.


Hayvansal Protein Esaslı Suni Lifler (Kazein)

Kazein

yağı alınmış sütten elde edilen hayvansal protein elyafıdır. Kazein elyafı elde etmek için önce süt pıhtılaştırılır, suyu süzülür ve geri kalan posası toz hâline getirilir. Seyreltik sodyum hidroksit çözeltisinde çözündürülür. Çözelti olgunlaşmaya bırakılır. Filtre edilir ve vakumla havası alındıktan sonra düzelerden asidik banyoya gönderilerek yaş çekim yöntemi ile filament elde edilir. Formaldehit banyosundan geçirilerek sertleştirilir. Filament kabloları yıkama ve kurutma işlemlerinden sonra kıvrım verilerek kesilir ve ştapel elyaf hâlinde balyalanır. Kazein elyafın yünden daha parlak ve yumuşak bir tutumu vardır. Mukavemeti 0,3-1 g/denye arasındadır. Esneme ve şişme özelliği yüksektir. Kuru halde % 50-70, yaş halde iken % 100'e yakın esnekliğe sahiptir. Yoğunluğu 1,29 g/cm³'tür. % 14 oranında nem çeker. Yakıldığında erir ve yanık süt kokusu duyulur. Yüne benzemesi nedeniyle asitlere karşı dayanıklı, alkalilere karşı hassastır. Güve, böcek ve mikro organizmalardan yün elyafı kadar zarar görmezler, ancak nemli ortamda olumsuz etkilenebilirler. Genellikle kesik elyaf hâlinde yünle karıştırılarak kullanılır. Mukavemetinin düşük olması ve suya dayanıklılığının az oluşu nedeniyle kullanımı sınırlıdır. Karışım olarak kullanıldığında mamul ürünlere dolgunluk, yumuşaklık, sıcak tutum gibi özellikler kazandırır. Trikotaj ürünlerinde kullanımı tercih edilir.

Rejenere Liflerin Aleve Karşı Tepkileri Ve Yanma Karakteristik Özellikleri

Rayon viskon: Ateşe yaklaşırken alevden uzaklaşmaz, hemen yanar. Pamuk lifinden daha çabuk tutuşur ve yanar. Ateşten uzaklaşınca yanmaya devam eder, yavaş yavaş sönmekte olan bir ateş bırakır. Yanmış kağıt kokusu verir. Çok az miktarda hafif kabarık kül bırakır. 

Asetat: Ateşe yaklaşırken alevden kaçarak erir ve yanar, Hızlı yanar ve erir, Alevden uzaklaştırılınca eriyerek hızlı bir şekilde yanmaya devam eder. Asetik asit (sıcak sirke) kokusu verir. Kırılgan, siyah ve şekilsiz topak halinde kalıntı bırakır. 

Azlon: Ateşe yaklaşırken erir ve ateşten kıvrılarak kaçar. Yavaş bir şekilde yanar. Alevden uzaklaştırılınca bazen kendiliğinden söner. Yanık saç kokusu verir. Kalıntı ise topak halinde kabarcıklı kül şeklindedir. Kalıntısı kırılgandır ve kolaylıkla ezilir. 

Kuru Destilasyon Testi

Kuru destilasyon testi, tekstil liflerinin cam tüp içinde ısıtılıp yakılmasıyla çıkan gazların pH değerinin tespit edilmesi esasına dayanır. Bir miktar lif numunesi kuru bir deney tüpü içerisine konarak yavaş yavaş ısıtılır. Isıtma sonunda çıkan gazlara pH kâğıdı tutularak gazların asidik veya bazik oluşuna göre (pH değerine göre) lif cinsi tayin edilir.

Rejenere Liflerin Kuru Destilasyon Sonuçları

Asetat lifleri: Turnosol kâğıdı, asidik (kırmızılaşır), pH: 2-3,

Rejenere protein lifleri: Turnosol kâğıdı, bazik (mavileşir), pH: 9-10,

Rayon, Viskon lifleri: Turnosol kâğıdı, asidik (kırmızılaşır), pH: 5-6

Spandex lifi 1958 yılında Du Pont firması tarafından bulunmuş ve lycra® ticari ismiyle piyasaya sürülmüştür.

A.B.D’de 1959 yılından beri kullanılmakta olan spandex lifi günlük giysiler, spor kıyafetleri, moda giysiler ve esnekliğin önemli olduğu birçok üründe, örneğin iç çamaşırları, sağlık gereçleri, çoraplar ve cerrahi sargılarda çok geniş kullanım alanı bulmuştur. Bunların üretiminde spandex tek başına değil, bir başka elyaf ile birlikte kullanılmaktadır. Spandex lifinin en temel özelliği, elastik bir lif olup serbest uzunluğunun altı katına kadar uzayabilmesi ve kuvvet kaldırıldığında orijinal uzunluğuna dönebilmesidir.

Spandex bir poliüretan lifidir, yapısındaki karakteristik grup üretan grubudur. Bu sınıf polimerler genellikle elastomer liflerin üretiminde kullanılırlar. Filament üretimi lineer yapıdaki poliüretanın yaş ve kuru eğirme yöntemleri ile uygun çözücülerde çözünmesi ile gerçekleşmektedir.

Bileşiminde en az %85 oranında elastomer yapıda polimer bulunan liflere spandex adı verilmektedir.

Spandex liflerinin değişik türleri vardır. Günümüzde polieter ve polyester olmak üzere iki farklı yapıda elastomerik polimer elde edilmektedir.

Pazar, 14 Şubat 2016 13:36

Yaş Çekim Metodu

Yazan

Bu yöntemde polimerin uygun bir çözücü içindeki çözeltisi hazırlanır. Bu çözelti,bir koagülasyon banyosu içinde bulunan düze başlığına bir pompa yardımıyla sabit basınç altında gönderilr.Düze başlığının bulunduğu koagülasyon banyosu denmesinin sebebi polimerin bu banyo içinde pıhtılaşması yani koagüle olmasıdır.Polimer çözeltisi ince deliklerden flament şeklinde çıktığından bu biçimde pıhtılaşır ve çöker.Koagülasyon banyosunun yapısı,polimeri çözelti halinden kat hale getirecek şekilde hazırlanır.Örneğin bazik çözeltilerde çözünüp asidlerde çözünmeyen çözünmeyen bir polimer maddenin bazik bir çözeltisi hazırlanır.Koagülasyon banyosu olarak da polimerin çözünmediği bir asidik çözelti seçilir.

 

 

05kim

 

1-Polimer Çözeltisi

( Polimerin uygun çözücü içindeki çözeltisi )

Bu çözelti,bir kuagülasyon banyosu içinde bulunan spinnet ( düze,Nozül ) başlığına bir pompa yardımıyla sabit basınç altıda gönderilir.

2-Pompa

Polimer çözeltisini,sabit basınç altında spinnet ( Düze,Nozül ) başlığına gönderir.

3-Spinnet ( Düze,Nozül ) Başlık

Spinnet başlıkları üzerinde elde edilecek flamentin çap büyüklüğünde bir veya birkaç delik bulunan başlıklardır.Koagülasyon banyosu içerisinde bulunur.

4-Koagülasyon Banyosu

Spinnet başlığının ince deliklerinden flament halinde çıkan polimer çözeltisi banyo içinde pıhtılaşır yani koagüle olur ve bu biçimde pıhtılaşır ve çöker. Koagülasyon banyosunun yapısı,polimeri çözelti halinde katı hale getirecek şekilde hazırlanır. Koagülasyon banyosunun yapısı,polimeri çözelti halinden kat hale getirecek şekilde hazırlanır.Örneğin bazik çözeltilerde çözünüp asidlerde çözünmeyen çözünmeyen bir polimer maddenin bazik bir çözeltisi hazırlanır.Koagülasyon banyosu olarak da polimerin çözünmediği bir asidik çözelti seçilir.

5-Katılaşan Flament

Polimer çözeltisi ince deliklerden flament şeklinde çıktığından bu biçimde katılaşır ve çöker.

6-Godet Dişlileri

Yapay elyafın üretimi sırasında hız ve gergiliğini ayarlamak için, etrafından flamentlerin geçtiği genellikle bir flanslı kasnaktır.

7-Germe

Flament halinde gelen polimerin çözeltisine az miktarda germe-çekme işlemi uygulanır.

8-Yıkama ve Kimyasal Muameleler

Flament üzerindeki çözeltileri temizler

9-Kurutma

Yıkama işleminden sonra kurutma yapılır.

10-Flamentlerin Sarılması

Flamentlerin Bobinlenmesi yapılır.

 

Pazar, 14 Şubat 2016 13:21

Kuru Çekim Metodu

Yazan

Bu yöntemle polimer çözeltisini hazırlamak için çözücü maddenin kolay uçucu,yani kaynama noktası düşük bir madde olması gerekir.Böyle bir çözelti ince deliklerden sabit basınç altında ve içindeki sıcak hava akımı geçen odalara püskürtülürse çözücü kolayca buharlaşır geriye flament şeklinde biçimlenmiş polimer madde kalır.Kuru çekim ( eğirme ) yöntemi özellikle asetat lifleri için kullanılmaktadır.Bunun yanında bazı poliakrilonitril lifleri elde edilmesinde kullanılır.

 

04kim

 

1-Polimer Çözeltisi

( polimerin uygun bir çözücü içindeki çözeltisi )

Çözücü maddenin kolay uçucu olması yanında kolay bulunan ucuz ve tutuşmayan cinsten olması tercih edilir.

2-Pompa

Polimer çözeltisi, sabit basınç altında spinneret ( düze, nozül) başlığına gönderir.

3-Spinneret ( Düze, Nozül ) Başlık

Spinneret başlıkları üzerinde elde edilecek flamentlerin çap büyüklüğünde bir veya birkaç delik bulunan başlıklardır.

4-Sıcak Hava Girişi

Polimer çözelti üzerindeki uçucu çözücünün buharlaşması sağlanır.

5-Hava Çıkışı

Hava ile çözücü buharlaşır.

6-Flamentler

Çözücü flamentlerden uzaklaştırılır.

7-Isınma Hücresi

İçinden sıcak hava akımı geçen oda

8-Germe-Çekme

Flament halinde çıkan polimer çözeltisine bir miktar germe-çekme uygulanır.

9-Sarma

Flamentler bobinlere sarılır.

1-REJENERE LİFLER

A-Rejenere Selüloz Lifleri

a-Viskoz İpeği

b-Bakır İpeği

c-Lyocell

B-Rejenere Selüloz Esteri

a-Asetat İpeği

b-Triasetat İpeği

Pazar, 14 Şubat 2016 11:26

Yumuşak Çekim ( Eğirme ) Metodu

Yazan

Poliamid, poliester ve polipropilen lifleri yumuşak çekim yöntemi ile üretilmektedir. Erimiş olan polimer, basınçla düzelere basılarak flament telleri halinde düze deliklerinden fırlatılır. Flamentler dışarı çıkar çıkmaz soğuk hava ile karşılaşırlar ve sertleşerek birbirleri ile yapışmaları önlenir. Daha sonra kalınca demetler halinde bir arada sarılırlar.Ancak demetteki flamentlerin sayısı düzelerin meme sayısına ayna zamanda meme deliklerinin çap genişliklerine göre değişik olur.Bu işlemde flament çaplarının kontrol edilmesi önem taşır.Bunun için düzenin,her meme deliğinin düzgün bir tarzda beslenmesi,çapların eşit olan deliklerden çıkan flamentlerin.aynı soğutma koşulu altında sertleşmesi sağlanmalıdır.Memeden yumuşak halde çıkan flamentlerin katılaşması ilk birinci metre sonunda tamamlanmalı sonra demet halinde bir sarma mekanizması yardımı ile toplanmalıdır.

Flamentlerin soğutulması ve katılaşması kısa bir zamanda ve hızlı bir şekilde gerçekleştirildiğinde bu süre içinde lif strüktürleri yeteri kadar kristalleşmiş hatta kısmen uzamış olsalar bile amorf bölgelerinin oranında fazla bir azalma olmaz. Bu nedenle flamentlerde uyum kuvvetli olmadığından lif mukavementleri de yüksek değildir. Gerekli fiziksel özellikler makro-moleküllerin germe-çekme işlemine tabi tutulması ile kazandırılır.

Bu da flamentlerin normal veya yüksek temperatürde çekilmesi ile olmaktadır. Germe-çekme işlemi esnasında lifin oluşmasında rol alan makro-molekül zincirleri kendi aralarında sıralanmaya ayrıca lif eksenine göre paralel bir duruma geceçek değişikliğe zorlanmış olurlar. Aynı zamanda çekim gücü ve hızının şiddeti ile orantılı olarak flamentlerin boyları uzarken çapları da daralır.

 

03kim

 

1-Nylon Granülü

Nylon ürünleri bir hazneye konularak ileriki işleme hazırlanır.

2-Sıcak Izgaralar

Sıcak ızgaralara gelen granüller ısının etkisi ile eriyerek eriyik havuzuna akarlar.

3-Nylon Eriyik Havuzu

Izgaralardan gelen polimer bir sonraki aşama için pompaya gider.

4-Pompa

Eriyik havuzundan gelen polimeri,düzeden sabit basınçla püskürtür.

5-Spineret Başlığı ( Düze,Nozül )

Polimere istenilen numara, şekil ve biçim burada verilir.

6-Soğuk Hava Akımı

Burada düzeden çıkan sıcak flamentin soğutularak katılaşması sağlanır.

7-Buhar Odası

Burada soğutulan flamente buharlı hava verilir.

8-İplik Havuzu

Flamentin besleme silindirine gitmesini sağlar.

9-Besleme Silindirleri

Besleme silindirleri germe-çekme işlemi uygulayarak bobine sarıma hazır hale getirir.

10-Bobin

En son işlem olarak materyali bobine sarma işlemi gerçekleştirilir.